首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6473篇
  免费   281篇
  国内免费   81篇
测绘学   236篇
大气科学   522篇
地球物理   1530篇
地质学   2161篇
海洋学   524篇
天文学   1179篇
综合类   28篇
自然地理   655篇
  2022年   30篇
  2021年   75篇
  2020年   86篇
  2019年   122篇
  2018年   178篇
  2017年   161篇
  2016年   231篇
  2015年   174篇
  2014年   197篇
  2013年   410篇
  2012年   258篇
  2011年   342篇
  2010年   293篇
  2009年   381篇
  2008年   338篇
  2007年   292篇
  2006年   270篇
  2005年   262篇
  2004年   261篇
  2003年   208篇
  2002年   217篇
  2001年   117篇
  2000年   144篇
  1999年   102篇
  1998年   117篇
  1997年   81篇
  1996年   85篇
  1995年   85篇
  1994年   90篇
  1993年   74篇
  1992年   89篇
  1991年   69篇
  1990年   56篇
  1989年   51篇
  1988年   57篇
  1987年   52篇
  1986年   56篇
  1985年   68篇
  1984年   64篇
  1983年   77篇
  1982年   57篇
  1981年   65篇
  1980年   55篇
  1979年   65篇
  1978年   51篇
  1977年   34篇
  1976年   28篇
  1975年   26篇
  1974年   26篇
  1973年   30篇
排序方式: 共有6835条查询结果,搜索用时 296 毫秒
331.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
332.
We have empirically estimated how often fireball shocks produce overpressure (∆P) at the ground sufficient to damage windows. Our study used a numerical entry model to estimate the energy deposition and shock production for a suite of 23 energetic fireballs reported by U.S. Government sensors over the last quarter century. For each of these events, we estimated the peak ∆P on the ground and the ground area above ∆P thresholds of 200 and 500 Pa where light and heavy window damage, respectively, are expected. Our results suggest that at the highest ∆P, it is the rare, large fireballs (such as the Chelyabinsk fireball) which dominate the long-term areal ground footprints for heavy window damage. The height at the fireball peak brightness and the fireball entry angle contribute to the variance in ground ∆P, with lower heights and shallower angles producing larger ground footprints and more potential damage. The effective threshold energy for fireballs to produce heavy window damage is ~5–10 kT; such fireballs occur globally once every 1–2 years. These largest annual bolide events, should they occur over a major urban center with large numbers of windows, can be expected to produce economically significant window damage. However, the mean frequency of heavy window damage (∆P above 500 Pa) from fireball shock waves occurring over urban areas is estimated to be approximately once every 5000 yr. Light window damage (∆P above 200 Pa) is expected every ~600 yr.  相似文献   
333.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
334.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
335.
336.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   
337.
Coalbed methane (CBM) is a worldwide exploration target of the petroleum industry. In Brazil, the most important coal-bearing succession is associated with the Permian Rio Bonito Formation of the Paraná Basin. The gas-prone areas are located at the southeastern margin of the Paraná Basin and possibly in the offshore region of the northern part of the Pelotas Basin. Coalfields end abruptly at the present day shoreline, a result of rifting of Gondwana and the evolution of the South Atlantic Ocean. All geologic indicators suggest that in pre-rift times the coal seams extended further eastwards, probably now lying deeply buried below the sedimentary succession of the Pelotas Basin. The present paper discusses structural, stratigraphic, seismic and aeromagenetic data that support the preservation of continental crust beneath ocean sediment. If the coal beds had similar lateral extent to known onshore coals, and coal beds extended across the projected extension of the Parana basin, and there was a conservative 5 m of cumulative coal thickness, then a potential methane volume can be estimated for this newly inferred resource. Average onshore coal gas content is 32 scf/ton (1.00 m3/ton). If this is similar in the offshore coal deposits, then the hypothetical methane volume in the offshore area could be in excess of 1.9 × 1012 scf (56 × 109 m3). Metamorphism from dikes associated with rifting are potential complicating factors in these deposits, and since no borehole reaching the deep-lying strata in the offshore area are available, this is a hypothetical gas resource with a certain level of uncertainty which should be tested in the future by drilling a deep borehole.  相似文献   
338.
Excess nitrogen inputs to estuaries have been linked to deteriorating water quality and habitat conditions which in turn have direct and indirect impacts on aquatic organisms. This paper describes the application of a previously verified watershed loading model to estimate total nitrogen loading rates and relative source contributions to 74 small-medium sized embayment-type estuaries in southern New England. The study estuaries exhibited a gradient in nitrogen inputs of a factor of over 7000. On an areal basis, the range represented a gradient of approximately a factor of 140. Therefore, all other factors being equal, the study design is sufficient to evaluate ecological effects conceptually tied to excess nitrogen along a nitrogen gradient. In addition to providing total loading inputs rates to the study estuaries, the model provides an estimate of the relative contribution of the nitrogen sources from each watershed to each associated estuary. Cumulative results of this analysis reveal the following source ranking (means): direct atmospheric deposition (37%), ≈wastewater (36%), >indirect atmospheric deposition (16%) > fertilizer (12%). However, for any particular estuary the relative magnitudes of these source types vary dramatically. Together with scientific evidence on symptoms of eutrophication, the results of this paper can be used to develop empirical pressure-state models to determine critical nitrogen loading limits for the protection of estuarine water quality.  相似文献   
339.
The declining health of marine ecosystems around the world is evidence that current piecemeal governance is inadequate to successfully support healthy coastal and ocean ecosystems and sustain human uses of the ocean. One proposed solution to this problem is ecosystem-based marine spatial planning (MSP), which is a process that informs the spatial distribution of activities in the ocean so that existing and emerging uses can be maintained, use conflicts reduced, and ecosystem health and services protected and sustained for future generations. Because a key goal of ecosystem-based MSP is to maintain the delivery of ecosystem services that humans want and need, it must be based on ecological principles that articulate the scientifically recognized attributes of healthy, functioning ecosystems. These principles should be incorporated into a decision-making framework with clearly defined targets for these ecological attributes. This paper identifies ecological principles for MSP based on a synthesis of previously suggested and/or operationalized principles, along with recommendations generated by a group of twenty ecologists and marine scientists with diverse backgrounds and perspectives on MSP. The proposed four main ecological principles to guide MSP—maintaining or restoring: native species diversity, habitat diversity and heterogeneity, key species, and connectivity—and two additional guidelines, the need to account for context and uncertainty, must be explicitly taken into account in the planning process. When applied in concert with social, economic, and governance principles, these ecological principles can inform the designation and siting of ocean uses and the management of activities in the ocean to maintain or restore healthy ecosystems, allow delivery of marine ecosystem services, and ensure sustainable economic and social benefits.  相似文献   
340.
Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high‐fidelity re‐entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (~ 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat‐faced ureilite suitably shaped for emissivity measurements and a thin flat‐faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3‐D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10?5 K?1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号