首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   6篇
  国内免费   1篇
大气科学   3篇
地球物理   35篇
地质学   28篇
海洋学   15篇
天文学   11篇
自然地理   19篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   21篇
  2012年   7篇
  2011年   5篇
  2010年   8篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
61.
The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24–29 September eruptions added about 107 m3 and 8 × 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 × 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971.The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September.The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones.  相似文献   
62.
The die-back of eel-grass (Zostera marina, L.) is found to have played an important role with regard to near-shore sedimentation and coastal changes.In a natural harbour at Kyholm, Denmark a hiatus is found between silty sediments that date from about 4000 BC and overlying modern sandy sediments. It is suggested that this is a consequence of the die-back of eel-grass in the nineteen-thirties, resulting in mobilisation and disturbance of nearshore sediments and the shoreward movement of mobilised sandy material into the harbour. The coastal morphology of Kyholm was relatively stable from 1802 to 1933, but between 1933 and 1978 there have been two periods of drastic progradation correlated with die-back of eel-grass.  相似文献   
63.
The Bingham porphyry Cu-Au-Mo deposit, Utah, may only be world-class because of substantial contributions of sulfur and metals from mafic alkaline magma to an otherwise unremarkable calc-alkaline system. Volcanic mafic alkaline rocks in the district are enriched in Cr, Ni, and Ba as well as Cu, Au, platinum group elements (PGE), and S. The bulk of the volcanic section that is co-magmatic with ore-related porphyries is dacitic to trachytic in composition, but has inherited the geochemical signature of high Cr, Ni, and Ba from magma mixing with the mafic alkaline rocks. The volcanic section that most closely correlates in time with ore-related porphyries is very heterogeneous containing clasts of scoriaceous latite, latitic, and minette, and flows of melanephelinite, shoshonite, and olivine latite in addition to volumetrically dominant dacite/trachyte. Bingham ore-related porphyries show ample evidence of prior mixing with mafic alkaline magmas. Intrusive porphyries that have not been previously well-studied have several chemical and mineralogical indications of magma mixing. These "mixed" lithologies include the hybrid quartz monzonite porphyry, biotite porphyry, and minette dikes. Even some of the more silicic latite and monzonite porphyries retain high Cr and Ba contents indicative of mixing and contain trace amounts of sapphire (<1 mm). The heterogeneous block and ash flow deposits also contain sapphire and are permissively correlated with the intrusions based on chemical, mineralogical, and isotopic data. Magma mixing calculations suggest about 10% of the monzonitic/latitic ore-related magma may have been derived from mafic alkaline magma similar to the melanephelinite. If the original S content of the mafic magma was about 2,000-4,000 ppm, comparable with similar magmas, then the mafic magma may have been responsible for contributing more than half of the S and a significant portion of the Cu, Au, and PGE in the Bingham deposit.  相似文献   
64.
The objective of this paper is to assess recent developments and prospects for future changes in United States (US) climate strategy. In doing so, the paper explores some of the key factors that have shaped strategies and policies to date, distinguishing between factors related to institutional and governance structures, linkages between science and policy, energy technology and the role of interest groups. Against this background, the paper attempts to explore future development paths for US climate policy. More specifically, the paper assesses opportunities for policy changes compared to the preferences of the current administration, and the prospects for future linkages between US and international climate change strategies. In brief, the paper argues that substantial changes are unlikely to take place in the near to medium term, leaving open, however, the possibility of wide-ranging changes in domestic politics or major incidents that could facilitate a shift in the perceived need for near-term action.  相似文献   
65.
We examine 20-yr data sets of seismic activity from 10 volcanic areas in the western United States for annual periodic signals (seasonality), focusing on large calderas (Long Valley caldera and Yellowstone) and stratovolcanoes (Cascade Range). We apply several statistical methods to test for seasonality in the seismic catalogs. In 4 of the 10 regions, statistically significant seasonal modulation of seismicity (> 90% probability) occurs, such that there is an increase in the monthly seismicity during a given portion of the year. In five regions, seasonal seismicity is significant in the upper 3 km of the crust. Peak seismicity occurs in the summer and autumn in Mt. St. Helens, Hebgen Lake/Madison Valley, Yellowstone Lake, and Mammoth Mountain. In the eastern south moat of Long Valley caldera (LVC) peak seismicity occurs in the winter and spring. We quantify the possible external forcing mechanisms that could modulate seasonal seismicity. Both snow unloading and groundwater recharge can generate large stress changes of > 5 kPa at seismogenic depths and may thus contribute to seasonality.  相似文献   
66.
During the 1969–1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970–1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12–13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes.  相似文献   
67.
The analysis of 3 subsamples from each of 12 sediment cores from a micro-tidal flat shows that spreading of Spartina effects sediment parameters. The effect diminishes with distance to vegetation.  相似文献   
68.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   
69.
A methodology was tested for high‐resolution mapping of vegetation and detailed geoecological patterns in the Arctic Tundra, based on aerial imagery from an unmanned aerial vehicle (visible wavelength – RGB, 6 cm pixel resolution) and from an aircraft (visible and near infrared, 20 cm pixel resolution). The scenes were fused at 10 and 20 cm to evaluate their applicability for vegetation mapping in an alluvial fan in Adventdalen, Svalbard. Ground‐truthing was used to create training and accuracy evaluation sets. Supervised classification tests were conducted with different band sets, including the original and derived ones, such as NDVI and principal component analysis bands. The fusion of all original bands at 10 cm resolution provided the best accuracies. The best classifier was systematically the maximum neighbourhood algorithm, with overall accuracies up to 84%. Mapped vegetation patterns reflect geoecological conditioning factors. The main limitation in the classification was differentiating between the classes graminea, moss and Salix, and moss, graminea and Salix, which showed spectral signature mixing. Silty‐clay surfaces are probably overestimated in the south part of the study area due to microscale shadowing effects. The results distinguished vegetation zones according to a general gradient of ecological limiting factors and show that VIS+NIR high‐resolution imagery are excellent tools for identifying the main vegetation groups within the lowland fan study site of Adventdalen, but do not allow for detailed discrimination between species.  相似文献   
70.
In the periglacial unconsolidated sediment landscape of Zackenberg in High Arctic NE Greenland, perennial and seasonal snowpatches dominate the geomorphological development in large areas and control the distribution of the vegetation. The existence and distribution of snowpatches and their associated landforms are mainly controlled by the dominating winter wind direction and the amount of snow precipitation, with aspect exerting much less influence. This makes them an important source of information on past environmental change, and knowledge of the combination of geomorphological processes and forms that result from their existence is thus essential. The main nivation processes are backwall failure, sliding and flow, niveo-aeolian sediment transport, supra- and ennival sediment flows, niveo-fluvial erosion, development of pronival stone pavements, accumulation of alluvial fans and basins, and pronival solifluction. The importance of failure, sliding and flow in the continuous retrogressive extension of nivation hollows and niches is emphasized under the term backwall failure. A morphological assemblage of landforms clearly demonstrates the direct nival sediment transfer link between the eroded nivation hollows, their associated meltwater eroded channels and the pronival alluvial fans or basins. All landform elements and their formative processes are integrated into a comprehensive model. © 1998 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号