首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   9篇
测绘学   6篇
大气科学   6篇
地球物理   25篇
地质学   83篇
海洋学   34篇
天文学   13篇
自然地理   43篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   11篇
  2012年   13篇
  2011年   22篇
  2010年   15篇
  2009年   22篇
  2008年   8篇
  2007年   16篇
  2006年   8篇
  2005年   15篇
  2004年   5篇
  2003年   1篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有210条查询结果,搜索用时 140 毫秒
31.
Magmatic sulfide deposits consist of pyrrhotite, pentlandite, chalcopyrite (± pyrite), and platinum-group minerals (PGM). Understanding the distribution of the chalcophile and platinum-group element (PGE) concentrations among the base metal sulfide phases and PGM is important both for the petrogenetic models of the ores and for the efficient extraction of the PGE. Typically, pyrrhotite and pentlandite host much of the PGE, except Pt which forms Pt minerals. Chalcopyrite does not host PGE and the role of pyrite has not been closely investigated. The Ni–Cu–PGE ores from the South Range of Sudbury are unusual in that sulfarsenide PGM, rather than pyrrhotite and pentlandite, are the main carrier of PGE, probably as the result of arsenic contribution to the sulfide liquid by the As-bearing metasedimentary footwall rocks. In comparison, the North Range deposits of Sudbury, such as the McCreedy East deposit, have As-poor granites in the footwall, and the ores commonly contain pyrite. Our results show that in the pyrrhotite-rich ores of the McCreedy East deposit Os, Ir, Ru, Rh (IPGE), and Re are concentrated in pyrrhotite, pentlandite, and surprisingly in pyrite. This indicates that sulfarsenides, which are not present in the ores, were not important in concentrating PGE in the North Range of Sudbury. Palladium is present in pentlandite and, together with Pt, form PGM such as (PtPd)(TeBi)2. Platinum is also found in pyrite. Two generations of pyrite are present. One pyrite is primary and locally exsolved from monosulfide solid solution (MSS) in small amounts (<2 wt.%) together with pyrrhotite and pentlandite. This pyrite is unexpectedly enriched in IPGE, As (± Pt) and the concentrations of these elements are oscillatory zoned. The other pyrite is secondary and formed by alteration of the MSS cumulates by late magmatic/hydrothermal fluids. This pyrite is unzoned and has inherited the low concentrations of IPGE and Re from the pyrrhotite and pentlandite that it has replaced.  相似文献   
32.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   
33.
Electron microbeam techniques have been used to examine submicroscopically intergrown paragonite, phengite and chlorite from the South Fork Mountain Schist of the Franciscan Terrane of northern California, which was subjected to blueschist facies metamorphism. The sample also contains quartz, albite, lawsonite, and rutile. The subassemblage albite-lawsonite-rutile requires metamorphic conditions on the low-temperature side of the equilibrium albite+lawsonite+rutile=paragonite+sphene+quartz+H2O (T<200° C and P<7.4 kbars based on thermodynamic data of Holland and Powell 1990). The white micas appear to be optically homogeneous, but back-scattered electron images can distinguish two different micas by their slight difference in contrast. Electron microprobe analyses (EMPA) of micas show Na/(Na+K) ranging from 0.2 to 0.8. The two micas are resolved by transmission electron microscopy (TEM) as packets of phengite and paragonite that range from 20 to several hundred nm in thickness. The compositions, determined by analytical electron microscopy (AEM), constrain the limbs of the phengite-paragonite solvus to values of Na/(Na+K)=<0.02 and 0.97, representing less mutual solid solution than ever reported by EMPA. The textural relations imply that the sheet silicates were derived from reactions between fluids and detrital clays and that they are in an intermediate stage of textural development. We caution that microprobe analyses of apparently homogeneous sheet silicates may yield erroneous data and lead to faulty conclusions using phengite barometry and paragonite-muscovite thermometry, especially in fine-grained rocks that formed at relatively low temperatures. Contribution no. 473 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan, USA  相似文献   
34.
35.
36.
37.
This study describes the origin and age of a body of massive ground ice exposed in the headwall of a thaw slump in the Red Creek valley, central Yukon, Canada. The site is located beyond the limits of Pleistocene glaciation in central Yukon and within the southern limit of the modern continuous permafrost zone. The origin of the massive ground ice, which is preserved under a fine-grained diamicton containing thin layers of tephra, was determined through ice petrography, stable O-H isotope composition of the ice, and gas composition of occluded air entrapped in the ice. The age of the massive ground ice was established by identifying the overlying tephra and radiocarbon dating of a “muck” deposit preserved within the ice. Collectively, the results indicate that the massive ground ice formed by snow densification with limited melting-refreezing and is interpreted as being a buried perennial snowbank. The muck deposit within the ice, which yielded an age of 30,720 ± 340 14C a BP, and the Dawson tephra (25,300 14C a BP) overlying the perennial snowbank, indicates that the snowbank accumulated at roughly the transition between marine isotope stages 3 and 2. Dry climatic conditions at this time and possibly high winds enabled the snowbank to accumulate in the absence of extensive local valley glaciation as occurred in the mountains to the south. In addition to documenting the persistence of relict permafrost and ground ice to warming climate in regions where they are predicted to disappear by numerical models, this study presents evidence of an isotopic biosignature preserved in a body of massive ground ice.  相似文献   
38.
Event plumes form as episodic discharges of large volumes of hydrothermal solutions in response to magmatic diking/eruptive events. In consequence, event plumes represent the sudden injection of exploitable reduced chemical substrates, as well as inhibitory constituents, and likely induce successional changes in the microbial community structure and activity within event plume waters. In response to a major seismic event detected beginning 28 February 1996 at the northern Gorda Ridge, a series of three rapid response and follow-up cruises (GREAT 1, 2 and 3) were mounted over a period of three months. This report focuses on time-series measurements of manganese geomicrobial parameters in the two event plumes found in association with this seismic event.Scanning transmission electron microscopy, elemental microanalysis, and radioisotope (54Mn) uptake experiments were employed on samples collected from vertical and tow-yo casts from the three cruises. Numbers of bacteria and ratios of metal precipitating capsuled bacteria to total bacteria were greatest in the youngest (days old) plume, EP96A, found during GREAT 1; however, when normalized to the hydrothermal temperature anomaly, the greatest values were found in a second event plume, EP96B, discovered during GREAT 2 (up to 1 month old). Early capsule bacteria and particulate Mn distributions may have been influenced by entrainment of resuspended sediment, while those of the oldest (2–3 months) plume sample may have been subjected to preferential aggregation and particle settling.  相似文献   
39.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
40.
The storm surge in coastal Mississippi caused by Hurricane Katrina was unprecedented in the region. The height and geographic extent of the storm surge came as a surprise to many and exceeded pre-impact surge scenarios based on SLOSH models that were the basis for emergency preparedness and local land use decision-making. This paper explores the spatial accuracy of three interpolated storm surge surfaces derived from post-event reconnaissance data by comparing the interpolation results to a specific SLOSH run. The findings are used to suggest improvements in the calibration of existing pre-event storm surge models such as SLOSH. Finally, the paper provides some suggestions on an optimal surge forecast map that could enhance the communication of storm surge risks to the public.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号