首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   3篇
测绘学   3篇
大气科学   4篇
地球物理   13篇
地质学   24篇
海洋学   15篇
天文学   2篇
自然地理   6篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   8篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1973年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
11.
12.
The tectonic development of a continental margin is recorded in the stratigraphic successions preserved along and across the margin in terms of stratal relationships (e.g., onlap, downlap, truncation), lithofacies, biostratigraphy, and paleo-water depths. By using these observations coupled to a kinematic and flexural model for the deformation of the lithosphere, we have elucidated the tectonic significance of the preserved stratigraphy that comprises the Gabon-Cabinda margin of west Africa. Two hinge zones, an Eastern and Atlantic, formed along the Gabon-Cabinda margin in response to three discrete extensional events occuring from Berriasian to Aptian time. The Eastern hinge zone demarcates the eastern limit of a broadly distributed Berriasian extension that resulted in the formation of deep anoxic, lacustrine systems as evidenced by the silts and shales of the Sialivakou and lower Djeno Formations and the regressive packages of the upper Djeno Formation. Approximately 1.5 to 2 km of asymmetric footwall uplift was induced across the Eastern hinge zone in response to the mechanical unloading of the lithosphere during this first phase of rifting. In contrast, the Atlantic hinge, located approximately 90 km west of the Eastern hinge, marks the eastern limit of a second phase of extension that began in the Hauterivian. Footwall uplift and rotation exposed earlier syn-rift and pre-rift sediments to at least wavebase causing varying amounts of erosional truncation across the Atlantic hinge zone along much of the Gabon-Cabinda margins. We interpret the thickness variations of reworked clastic sediment of this age (e.g. the Melania Formation) between the hinge zones as indicative of variations in the degree of uplift and erosional truncation of the Atlantic hinge. For example, the absence of Melania Formation across the Congo margin implies that uplift of the Atlantic hinge was relatively minor compared to that across the Cabinda and Gabon margins, the latter being characterized by significant thicknesses of Melania Formation (or equivalent). Material eroded from the Cabinda and Gabon Atlantic hinge zone may in part account for the thick wedge of sediment deposited seaward of the Gabon-Cabinda Atlantic hinge (the Erva Formation). Our modelling suggests that this wedge of reworked elastics represents deposition by along-axis gravity flows within a deep water (≈2 km) environment. A third and final phase of extension in the late Barremian-early Aptian was responsible for breaching the continental lithosphere to form the ocean/continent boundary and thus the installation of open marine conditions. Elsewhere, the environments will tend to be marginal marine to brackish, depending on the efficiency of the Atlantic hinge zone to act as a barrier to marine enchroachment. This third rift phase reactivated both the Eastern and Atlantic hinge0zones thereby creating accomodation for the Marnes Noires Formation (and equivalent) source rock deposition between the hinges and the Falcão source rock equivalent seaward of the Atlantic hinge. Two possible scenarios exist for the lateral distribution of the Marnes Noires Formation. If the reactivated rift flank topography across the Atlantic hinge was significant, then sedimentation would be restricted between the hinge zones within discrete lacustrine settings (e.g., Congo margin). Alternatively, if hinge zone uplift was relatively minor, then a coral-rimmed archipelago may have developed parallel to the margin with restricted communication across the Atlantic hinge zone (e.g., Cabinda margin). In this latter scenario, dilution of the Marnes Noires source rocks by terrigenous input from the eroding Atlantic hinge zone should be relatively minor thereby enhancing source rock quality. Furthermore, potential marine upwelling outboard of the Atlantic hinge zone is likely the cause for the production and accumulation of organic-rich material associated with the Falcão source rock of the Kwanza basin. By late Aptian time, the remaining accomodation between the hinge zones was partially filled by across- and along-axis prograding deltaic systems of the Argilles Vertes and Tchibota Formations. The progradation and interaction of the Argilles Vertes depositional lobes resulted in the formation of residual paleo-relief. Subsequent marine incursions and flooding of this paleo-relief led to the development of basal conglomerates (the Chela ‘lag’ unconformity) grading upward into fine-grained sands and evaporites. Consequently, an inverse relationship should exist betweeb evaporite thickness (in particular, the lower members) and the thickness of the underlying Argilles Vertes and Tchibota Formations. Variations in Loeme evaporite thickness is a consequence of stratigraphic and structural control with salt instability influencing local variability.Our modelling suggests the occurrence of two distinct evaporite sequences on the Congo margin, an earlier evaporite deposited seaward (west) of the Atlantic hinge during the second and third rift phases and the late Aptian Loeme Formation deposited between the hinge zones. An evaporite sequence seaward of the Atlantic hinge is inferred on the basis of extensive diapirs and salt tectonic structures observed in seismic data. In order to match the distribution and thickness of the observed post-salt stratigraphy across the basin, however, we require large paleowater depths west of the Atlantic hinge during the later Aptian. The existence of large paleowater depths precludes the formation of thick evaporite sequences within the outer basin. Consequently, we propose that the evaporites seaward of the Atlantic hinge were formed during the syn-rift development of the margin and are not contemporaneous with the post-rift Loeme salts deposited between the hinge zones. This double salt hypothesis is consistent with observations from the conjugate Brazilian margin.  相似文献   
13.
Detailed acoustic surveys of benthic sediments were conducted in July 1995 and September 1998 in the vicinity of Humboldt Bay, California. During these surveys, a band of enhanced acoustic backscatter was observed offshore from the bay entrance, approximately parallel to the isobaths, in water depths ranging from 16-24 m. In order to assess the cause of the increase in backscatter levels, a more comprehensive study was conducted in August and September 1999 using 100 kHz side-scan sonar, bottom grab sampling and underwater video recording. New observations indicated that a dense population of sand dollars ( Dendraster excentricus ) coincided with the enhanced backscatter band. Compared to the two previous acoustic studies, the central section of the band expanded westward by 180 m and the southern section of the band shifted eastward by 160 m, possibly resulting from a change in the biological or physical factors which influence the location and breadth of sand dollars. The relationship between high sand dollar abundance and enhanced acoustic backscatter was further verified in the nearshore region off Samoa Beach California, where a dense, banded population of sand dollars was previously observed. Video footage confirmed the presence of a band of sand dollars, also nominally parallel to the isobaths, in water depths of 8-15 m. A band of enhanced backscatter coincided with the dense sand dollar population. The identification of dense aggregations of sand dollars through enhanced acoustic backscatter could lead to the use of acoustic techniques to study sand dollar distributions and abundance.  相似文献   
14.
The International Nusantara Stratification and Transport (INSTANT) program measured currents through multiple Indonesian Seas passages simultaneously over a three-year period (from January 2004 to December 2006). The Indonesian Seas region has presented numerous challenges for numerical modelers — the Indonesian Throughflow (ITF) must pass over shallow sills, into deep basins, and through narrow constrictions on its way from the Pacific to the Indian Ocean. As an important region in the global climate puzzle, a number of models have been used to try and best simulate this throughflow. In an attempt to validate our model, we present a comparison between the transports calculated from our model and those calculated from the INSTANT in situ measurements at five passages within the Indonesian Seas (Labani Channel, Lifamatola Passage, Lombok Strait, Ombai Strait, and Timor Passage). Our Princeton Ocean Model (POM) based regional Indonesian Seas model was originally developed to analyze the influence of bottom topography on the temperature and salinity distributions in the Indonesian seas region, to disclose the path of the South Pacific Water from the continuation of the New Guinea Coastal Current entering the region of interest up to the Lifamatola Passage, and to assess the role of the pressure head in driving the ITF and in determining its total transport. Previous studies found that this model reasonably represents the general long-term flow (seasons) through this region. The INSTANT transports were compared to the results of this regional model over multiple timescales. Overall trends are somewhat represented but changes on timescales shorter than seasonal (three months) and longer than annual were not considered in our model. Normal velocities through each passage during every season are plotted. Daily volume transports and transport-weighted temperature and salinity are plotted and seasonal averages are tabulated.  相似文献   
15.
16.
17.
Using water budget data from published literature, we demonstrate how hydrologic processes govern the function of various stormwater infrastructure technologies. Hydrologic observations are displayed on a Water Budget Triangle, a ternary plot tool developed to visualize simplified water budgets, enabling side‐by‐side comparison of green and grey approaches to stormwater management. The tool indicates ranges of hydrologic function for green roofs, constructed wetlands, cisterns, bioretention, and other stormwater control management structures. Water budgets are plotted for several example systems to provide insight on structural and environmental design factors, and seasonal variation in hydrologic processes of stormwater management systems. Previously published water budgets and models are used to suggest appropriate operational standards for several green and grey stormwater control structures and compare between conventional and low‐impact development approaches. We compare models, characterize and quantify water budgets and expected ranges for green and grey infrastructure systems, and demonstrate how the Water Budget Triangle tool may help users to develop a data‐driven approach for understanding design and retrofit of green stormwater infrastructure.  相似文献   
18.
19.
20.
Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia’s most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007–2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47–94), orthopyroxene (En64–72, Fs24–32, Wo2–4), clinopyroxene (En40–48, Fs14–19, Wo34–46), Ti-magnetite (Usp16–34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6.5 to 7.6 ‰, respectively. A single whole rock analysis of the 2007–2008 dome lava gave a δ18O value of 7.6 ‰, whereas meta-basaltic and calc-silicate xenoliths are characterised by δ18O values of 6.2 and 10.3 ‰, respectively. Magmatic δ18O values calculated from individual pyroxene and plagioclase analyses range from 5.7 to 7.0 ‰, and 6.2 to 7.4 ‰, respectively. This range in O-isotopic compositions is explained by crystallisation of pyroxenes in the lower to mid-crust, where crustal contamination is either absent or masked by assimilation of material having similar δ18O values to the ascending melts. This population is mixed with isotopically distinct plagioclase and pyroxenes that crystallised from a more contaminated magma in the upper crustal system. Binary bulk mixing models suggest that shallow-level, recycled volcaniclastic sedimentary rocks together with calc-silicates and/or limestones are the most likely contaminants of the 2007–2008 Kelut magma, with the volcaniclastic sediments being dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号