首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   24篇
地球物理   48篇
地质学   77篇
海洋学   12篇
天文学   27篇
自然地理   4篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   6篇
  2016年   13篇
  2015年   7篇
  2014年   14篇
  2013年   12篇
  2012年   13篇
  2011年   10篇
  2010年   14篇
  2009年   10篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
191.
Abstract– Xenoliths are inclusions of a given meteorite group embedded in host meteorites of a different group. Xenoliths with dimensions between a few μm and about 1 mm (microxenoliths) are “meteorite‐trapped” analogues of micrometeorites collected on the Earth. However, they have the unique features of sampling the zodiacal cloud (1) at more ancient times than those sampled by micrometeorites and (2) at larger distances from the Sun (corresponding to the asteroid Main Belt) than that sampled by micrometeorites (1 AU). Herein we describe a systematic search for new xenoliths and microxenoliths in H chondrites, aimed at determining their abundance in these ordinary chondrites, analyzing their mineralogy, and searching for possible correlations with host meteorite properties. Sixty‐six sections from 40 meteorites have been analyzed. Twenty‐four new xenoliths have been discovered. About 87% of them are microxenoliths (i.e., <1 mm), only three are >1 mm in their largest dimension. All the newly discovered xenoliths and microxenoliths are composed of carbonaceous chondritic material. Hence, the zodiacal cloud was dominated by carbonaceous material even in past epochs. All the new xenoliths and microxenoliths have been found in regolith breccias. Hydrous‐phase‐rich xenoliths and microxenoliths in H4 and H5 chondrites attest that their embedding happened after the end of the thermal metamorphism. All these data suggest that xenoliths and microxenoliths were embedded when their host meteorites were part of the parent body regolith. This, combined with the H chondrite impact age distribution, attests that the embedding may have happened as early as 3.5 Gyr ago.  相似文献   
192.
Ocean feedback to tropical cyclones: climatology and processes   总被引:1,自引:0,他引:1  
This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air–sea coupling processes controlling tropical cyclone (TC) intensity. The coupling effect is analyzed through comparison of the coupled model with a companion forced experiment. Cyclogenesis patterns in the coupled model are closer to observations with reduced cyclogenesis in the Coral Sea. This provides novel evidence of air–sea coupling impacting not only intensity but also spatial cyclogenesis distribution. Storm-induced cooling and consequent negative feedback is stronger for regions of shallow mixed layers and thin or absent barrier layers as in the Coral Sea. The statistical effect of oceanic mesoscale eddies on TC intensity (crossing over them 20 % of the time) is also evidenced. Anticyclonic eddies provide an insulating effect against storm-induced upwelling and mixing and appear to reduce sea surface temperature (SST) cooling. Cyclonic eddies on the contrary tend to promote strong cooling, particularly through storm-induced upwelling. Air–sea coupling is shown to have a significant role on the intensification process but the sensitivity of TCs to SST cooling is nonlinear and generally lower than predicted by thermodynamic theories: about 15 rather than over 30 hPa °C?1 and only for strong cooling. The reason is that the cooling effect is not instantaneous but accumulated over time within the TC inner-core. These results thus contradict the classical evaporation-wind feedback process as being essential to intensification and rather emphasize the role of macro-scale dynamics.  相似文献   
193.
Abstract– Micrometeoroids with 100 and 200 μm size dominate the zodiacal cloud dust. Such samples can be studied as micrometeorites, after their passage through the Earth atmosphere, or as microxenoliths, i.e., submillimetric meteorite inclusions. Microxenoliths are samples of the zodiacal cloud dust present in the asteroid Main Belt hundreds of millions years ago. Carbonaceous microxenoliths represent the majority of observed microxenoliths. They have been studied in detail in howardites and H chondrites. We investigate the role of carbonaceous asteroids and Jupiter‐family comets as carbonaceous microxenolith parent bodies. The probability of low velocity collisions of asteroidal and cometary micrometeoroids with selected asteroids is computed, starting from the micrometeoroid steady‐state orbital distributions obtained by dynamical simulations. We selected possible parent bodies of howardites (Vesta) and H chondrites (Hebe, Flora, Eunomia, Koronis, Maria) as target asteroids. Estimates of the asteroidal and cometary micrometeoroid mass between 2 and 4 AU from the Sun are used to compute the micrometeoroid mass influx on each target. The results show that all the target asteroids (except Koronis) receive the same amount (within the uncertainties) of asteroidal and cometary micrometeoroids. Therefore, both these populations should be observed among howardite and H chondrite carbonaceous microxenoliths. However, this is not the case: carbonaceous microxenoliths show differences similar to those existing among different groups of carbonaceous chondrites (e.g., CI, CM, CR) but two sharply distinct populations are not observed. Our results and the observations can be reconciled assuming the existence of a continuum of mineralogical and chemical properties between carbonaceous asteroids and comets.  相似文献   
194.
Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ∼5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ18O and ±0.71‰ for δ13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ18O and 0.10-0.29‰ for δ13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ18O (up to 9.4‰), intercrystalline inhomogeneity in δ18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ18O and δ13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively rapid oxygen isotope diffusion in calcite, intracrystalline inhomogeneities in δ18O likely represent partial equilibration between calcite and fluid during retrograde metamorphism. Calcite is in oxygen isotope exchange equilibrium with forsterite in one of four analyzed samples, in equilibrium with dolomite in none of six analyzed samples, and in equilibrium with quartz in neither of two analyzed samples. There are no samples of contact metamorphic rock with analyzed reactants and products of an arrested metamorphic reaction that are in oxygen isotope equilibrium with each other. The degree of departure from equilibrium in analyzed samples is variable and is often related, at least in part, to alteration of δ18O of calcite during retrograde fluid-rock reaction. In situ sub-grain-scale carbon and oxygen isotope analyses of minerals are advisable in the common applications of stable isotope geochemistry to metamorphic petrology. Correlation of sub-mm scale stable isotope data with imaging will lead to improved understanding of reaction kinetics, reactive fluid flow, and thermal histories during metamorphism.  相似文献   
195.
The Indian Ocean Dipole (IOD) can affect the El Niño–Southern Oscillation (ENSO) state of the following year, in addition to the well-known preconditioning by equatorial Pacific Warm Water Volume (WWV), as suggested by a study based on observations over the recent satellite era (1981–2009). The present paper explores the interdecadal robustness of this result over the 1872–2008 period. To this end, we develop a robust IOD index, which well exploits sparse historical observations in the tropical Indian Ocean, and an efficient proxy of WWV interannual variations based on the temporal integral of Pacific zonal wind stress (of a historical atmospheric reanalysis). A linear regression hindcast model based on these two indices in boreal fall explains 50 % of ENSO peak variance 14 months later, with significant contributions from both the IOD and WWV over most of the historical period and a similar skill for El Niño and La Niña events. Our results further reveal that, when combined with WWV, the IOD index provides a larger ENSO hindcast skill improvement than the Indian Ocean basin-wide mode, the Indian Monsoon or ENSO itself. Based on these results, we propose a revised scheme of Indo-Pacific interactions. In this scheme, the IOD–ENSO interactions favour a biennial timescale and interact with the slower recharge-discharge cycle intrinsic to the Pacific Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号