首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   48篇
  国内免费   4篇
测绘学   20篇
大气科学   108篇
地球物理   145篇
地质学   240篇
海洋学   33篇
天文学   138篇
综合类   14篇
自然地理   55篇
  2024年   2篇
  2023年   4篇
  2021年   8篇
  2020年   10篇
  2019年   14篇
  2018年   28篇
  2017年   18篇
  2016年   34篇
  2015年   23篇
  2014年   26篇
  2013年   48篇
  2012年   38篇
  2011年   40篇
  2010年   40篇
  2009年   42篇
  2008年   43篇
  2007年   36篇
  2006年   36篇
  2005年   35篇
  2004年   25篇
  2003年   22篇
  2002年   10篇
  2001年   16篇
  2000年   10篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   10篇
  1995年   4篇
  1994年   8篇
  1993年   4篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   7篇
  1987年   2篇
  1986年   5篇
  1984年   5篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1976年   4篇
  1973年   2篇
  1972年   3篇
  1970年   4篇
  1969年   2篇
  1967年   4篇
  1949年   1篇
  1948年   1篇
排序方式: 共有753条查询结果,搜索用时 46 毫秒
701.
The multipart Riffeltal rock glacier, located in a tributary valley of the Kaunertal, Tyrol, Austria is investigated to enlarge the knowledge about spatial and temporal development of rock glaciers in and at the margins of pro‐glacial areas and to get a better understanding of glacier–rock glacier interactions. The subject of interest consists of a complex system of two adjacent rock glacier tongues and various superposed lobes with differing ages, origin and root zones, and therefore diverse development. To determine the reasons for their diverging development, the internal structure and permafrost occurrence on and in the surrounding area of the rock glacier were studied by application of geomorphological mapping, geophysical methods and measurement of the basal temperature of the winter snow cover (BTS). Permafrost modelling was performed on the basis of BTS data and land surface parameters derived from a high resolution airborne laser scanning (ALS) digital elevation model (DEM). Additionally, the ALS data were used to measure vertical and horizontal changes of the rock glacier surface between 2006 and 2012. Glacier–rock glacier interactions during and since the Little Ice Age (LIA) are evident for the development of the studied rock glacier. A geomorphic map gives important information about the connection between glacial advance or retreat and permafrost or ground ice occurrence. The combination of all information helps in the analysis of diverse kinematic action of neighbouring rock glacier tongues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
702.
Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the Clausius–Clapeyron equation) and of precipitation at the rate 2–3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~?0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988?2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius?Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.  相似文献   
703.
Water and energy fluxes at and between the land surface, the subsurface and the atmosphere are inextricably linked over all spatio‐temporal scales. Our research focuses on the joint analysis of both water and energy fluxes in a pre‐alpine catchment (55 km2) in southern Germany, which is part of the Terrestrial Environmental Observatories (TERENO). We use a novel three‐dimensional, physically based and distributed modelling approach to reproduce both observed streamflow as an integral measure for water fluxes and heat flux and soil temperature measurements at an observation location over a period of 2 years. While heat fluxes are often used for comparison of the simulations of one‐dimensional land surface models, they are rarely used for additional validation of physically based and distributed hydrological modelling approaches. The spatio‐temporal variability of the water and energy balance components and their partitioning for dominant land use types of the study region are investigated. The model shows good performance for simulating daily streamflow (Nash–Sutcliffe efficiency > 0.75). Albeit only streamflow measurements are used for calibration, the simulations of hourly heat fluxes and soil temperatures at the observation site also show a good performance, particularly during summer. A limitation of the model is the simulation of temperature‐driven heat fluxes during winter, when the soil is covered by snow. An analysis of the simulated spatial fields reveals heat flux patterns that reflect the distribution of the land use and soil types of the catchment. The water and energy partitioning is characterized by a strong seasonal cycle and shows clear differences between the selected land use types. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   
704.
Rock moisture during freeze–thaw events is a key factor for frost weathering. Data on moisture levels of natural rockwalls are scarce and difficult to obtain. To close this gap, we can benefit from the extensive knowledge of moisture‐related phenomena in building materials, which is incorporated into simulation software, for example the WUFI® package of the Fraunhofer Institute of Building Physics. In this paper we applied and adapted this type of simulation to natural rockwalls to gain new insights on which moisture‐related weathering mechanisms may be important under which conditions. We collected the required input data on physical rock properties and local climate for two study areas in the eastern European Alps with different elevation [Sonnblick, 3106 m above sea level (a.s.l.) and Johnsbach, 700 m a.s.l.] and different lithologies (gneiss and dolomite, respectively). From this data, moisture profiles with depth and fluctuations in the course of a typical year were calculated. The results were cross‐checked with different thermal conditions for frost weathering reported in the literature (volumetric expansion and ice segregation theories). The analyses show that in both study areas the thresholds for frost cracking by volumetric expansion of ice (90% pore saturation, temperature < ?1 °C) are hardly ever reached (in one year only 0.07% of the time in Johnsbach and 0.4% at Sonnblick, mostly in north‐exposed walls). The preconditions for weathering by ice segregation (?3 to ?8 °C, > 60% saturation) prevail over much longer periods; the time spent within this ‘frost cracking window‘ is also higher for north‐facing sites. The influence of current climate warming will reduce effective frost events towards 2100; however the increase of liquid precipitation and rock moisture will promote weathering processes like ice segregation at least at the Sonnblick site. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
705.
The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy‐efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were only estimates or, at best, model results. Here, we present data on the typology, thickness, composition, and hydraulic properties obtained from the sampling of excavated dewatering wells in lignite surface mines and from inclined core drilling into the annulus of an abandoned water well. Despite the limited number of samples, several types of skin were identified. Both surface cake filtration and particle straining in the aquifer occur. The presence of microcracks may be a determining feature for the hydraulic conductivity of skin layers. In the case of the well‐developed water supply well, no skin layer was detected. The observed types and properties of wellbore skin samples can be used to test the many mathematical skin models.  相似文献   
706.
707.
The Changjiang (Yangtze) estuarine and offshore sediments were analyzed for total heavy metals concentrations and chemical fractions.Distributions of heavy metals show typical banded diffusion pattern,with high concentrations near the river mouth and following a decreasing trend in the offshore direction.According to chemical fractions,Fe/Mn oxide fraction is the major non-residual fraction in the Changjiang estuarine and offshore sediments.Higher percentage of non-residual fraction of Pb implies that,the industrial contaminations transported via the atmosphere and river input,may affect the non-residual fraction of heavy metals.Over past fifteen years,the concentration of Pb normalizing to Al presents significant increasing trend,corresponding to the effect of human activities.By comparison of heavy metals fractions in 2003 to 2006,it has been realized that increasing water and sediment may cause a higher percentage non-residual fraction of Cu in the southern part of offshore muddy sediments.  相似文献   
708.
Valuable information about one-dimensional soil structures can be obtained by recording ambient vibrations at the surface, in which the energy contribution of surface waves predominates over the one of other types of waves. The dispersion characteristics of surface waves allow the retrieval of the shear-wave velocity as a function of depth. Microtremor studies are usually divided in two stages: deriving the dispersion (or auto-correlation) curve from the recorded signals and inverting it to obtain the site velocity profile. The possibility to determine the dispersion curve over the adequate frequency range at one site depends on the array aperture and on the wavefield spectra amplitude that can be altered by filtering effects due to the ground structure. Microtremors are usually recorded with several arrays of various apertures to get the spectral curves over a wide frequency band, and different methods also exist for processing the raw signals. With the objective of defining a strategy to achieve reliable results for microtremor on a shallow structure, we analyse synthetic ambient vibrations (vertical component) simulated with 333 broadband sources for a 25-m deep soil layer overlying a bedrock. The first part of our study is focused on the determination of the reliable frequency range of the spectral curves (dispersion or auto-correlation) for a given array geometry. We find that the wavenumber limits deduced from the theoretical array re sponse are good estimates of the valid spectral curve range. In the second part, the spectral curves are calculated with the three most popular noise-processing techniques (frequency–wavenumber, high-resolution frequency–wavenumber and spa tial auto-correlation methods) and inverted indi vidually in each case. The inversions are performed with a tool based on the neighbour hood algorithm that offers a better estimation of the global uncertainties than classical linearised methods, especially if the solution is not unique. Several array apertures are necessary to construct the dispersion (auto-correlation) curves in the appropriate frequency range. Considering the final velocity profiles, the three tested methods are almost equivalent, and no significant advantage was found for one particular method. With the chosen model, all methods exhibit a penetration limited to the bedrock depth, as a consequence of the filtering effect of the ground structure on the vertical component, which was observed in numerous shallow sites.  相似文献   
709.
We investigate the petrofabric of crustal rocks from Mars and Vesta through the measurement of the anisotropy of the magnetic susceptibility (AMS) of achondrites. Previous data are integrated with new measurements to obtain a dataset that provide macroscopic information about the magnetic fabric of 41 meteorites of the howardite–eucrite–diogenite clan (HED, falls only) and 16 Martian meteorites. The interpretation takes into account the large contribution of paramagnetism to the magnetic susceptibility of these meteorites. We use a model that allows the computation of the anisotropy degree of the population of ferromagnetic grains and provides a quantitative proxy for the degree of shape preferential orientation of these grains in HED and Martian meteorites. The results also provide quantitative information about the shape of the magnetic fabric (prolate, oblate).In HED achondrites, the ductile FeNi grains are sensitive strain recorders and our magnetic fabric data provide the first quantitative insights to the strain history of the crustal rocks of Vesta. Most HED achondrites are breccias but display a strong and spatially coherent magnetic anisotropy, indicating that intense deformation of FeNi grains took place after brecciation. The average fabric of eucrites, howardites is oblate (i.e. the texture is foliated) whereas the fabric of diogenites is more neutral. The howardite results suggest the existence of an isotropic fraction of ferromagnetic minerals that can be ascribed to the presence of carbonaceous chondrite clasts that have preserved their original magnetic fabric. In this hypothesis, howardites have an intensity of petrofabric very similar to eucrites and diogenites. Thermal metamorphism (itself possibly impact-related) plus lithostatic compaction occurring after brecciation appears as the best candidate to explain the observed petrofabric in eucrites and diogenites, whereas compaction by hypervelocity impacts may be reponsible for the fabric of howardites.Martian meteorites may still possess their primary magmatic fabric. Among Martian meteorites, basaltic shergottites and nakhlites display an oblate fabric (foliated texture) with only limited variations among each group. Olivine–phyric shergottites have a neutral fabric that points to a different petrogenesis. Nakhlites have weaker fabric intensity than shergottites. The fabric intensity is comparable to what is classically observed in terrestrial volcanic and plutonic rocks.  相似文献   
710.
Major and trace element zonation patterns were determined in ultrahigh-pressure eclogite garnets from the Western Gneiss Region (Norway). All investigated garnets show multiple growth zones and preserve complex growth zonation patterns with respect to both major and rare earth elements (REE). Due to chemical differences of the host rocks two types of major element compositional zonation patterns occur: (1) abrupt, step-like compositional changes corresponding with the growth zones and (2) compositionally homogeneous interiors, independent of growth zones, followed by abrupt chemical changes towards the rims. Despite differences in major element zonation, the REE patterns are almost identical in all garnets and can be divided into four distinct zones with characteristic patterns.In order to interpret the major and trace element distribution and zoning patterns in terms of the subduction history of the rocks, we combined thermodynamic forward models for appropriate bulk rock compositions to yield molar proportions and major element compositions of stable phases along the inferred pressure-temperature path with a mass balance distribution of REEs among the calculated stable phases during high pressure metamorphism. Our thermodynamic forward models reproduce the complex major element zonation patterns and growth zones in the natural garnets, with garnet growth predicted during four different reaction stages: (1) chlorite breakdown, (2) epidote breakdown, (3) amphibole breakdown and (4) reduction in molar clinopyroxene at ultrahigh-pressure conditions.Mass-balance of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. Garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction. The rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions as well as local peaks that can be explained by fractionation effects and changes in the mineral assemblage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号