首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27175篇
  免费   331篇
  国内免费   961篇
测绘学   1472篇
大气科学   2209篇
地球物理   5304篇
地质学   12471篇
海洋学   1249篇
天文学   2144篇
综合类   2167篇
自然地理   1451篇
  2022年   24篇
  2021年   55篇
  2020年   63篇
  2019年   63篇
  2018年   4836篇
  2017年   4097篇
  2016年   2682篇
  2015年   316篇
  2014年   179篇
  2013年   201篇
  2012年   1095篇
  2011年   2846篇
  2010年   2123篇
  2009年   2458篇
  2008年   2021篇
  2007年   2507篇
  2006年   182篇
  2005年   303篇
  2004年   500篇
  2003年   501篇
  2002年   333篇
  2001年   90篇
  2000年   98篇
  1999年   58篇
  1998年   62篇
  1997年   33篇
  1996年   37篇
  1995年   33篇
  1994年   39篇
  1993年   23篇
  1992年   35篇
  1991年   33篇
  1990年   40篇
  1989年   26篇
  1988年   22篇
  1987年   18篇
  1986年   19篇
  1985年   30篇
  1984年   36篇
  1983年   29篇
  1982年   21篇
  1981年   54篇
  1980年   43篇
  1979年   24篇
  1978年   24篇
  1977年   15篇
  1976年   18篇
  1975年   13篇
  1974年   14篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
161.
162.
163.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
164.
The North Atlantic right whale, a seriously endangered species, is found in Cape Cod Bay (Massachusetts, USA) during the winter and early spring. During their residency in these waters, these whales are frequently observed feeding. This study evaluated spatial and temporal changes in the chemical composition (carbon weight and C/N ratio) of the food resource targeted by the right whales in Cape Cod Bay. The three taxa measured (Centropages typicus, Pseudocalanus spp., and Calanus finmarchicus) had highly variable chemical compositions resulting from the different life strategies and from fluctuations in their surrounding environment. The impact of seasonal variability in the energy densities of the food resource of right whales was calculated and compared to the energetic requirements of these whales. Calculations indicated that differences in the nutritional content of the zooplankton prey in Cape Cod Bay could have a considerable effect on the nutrition available to the right whales. Therefore, it is likely that using more precise estimates of the energetic densities of the prey of right whales would lead to a re‐evaluation of the adequacy of the food resource available to these whales in the North Atlantic.  相似文献   
165.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
166.
The copepods Neocalanus plumchrus, N. flemingeri, N. cristatus, and Eucalanus bungii dominate the net zooplankton throughout the subarctic Pacific Ocean. All four species have an extensive seasonal ontogenetic vertical migration, completing most or all of their feeding and somatic growth in spring and early summer. We used stratified tows with MOCNESS and BIONESS instrumented net systems to resolve their upper ocean vertical distributions in May and June of 1984, 1987 and 1988. In each year the feeding copepodite stages of all four species were concentrated above the permanent halocline (roughly from 0 to 150m). However, the four species showed strong vertical species zonation and segregation within this layer. We consistently found a near-surface pair (N. plumchrus and N. flemingeri) and a subsurface pair (N. cristatus and E. bungii). The boundary between these groups shifts vertically, but was sharply defined and was very often coincident with a weak and transient thermocline marking the base of the layer actively mixed by surface wind and wave energy. Diel vertical migration was very limited during our sampling periods.The data suggest that the vertical distribution patterns of the copepods could be set by responses to the local intensity of turbulent mixing in the watercolumn. N. plumchrus and N. flemingeri occupied a stratum characterized by strong turbulence. N. cristatus and E. bungii occupied a stratum that was a local minimum in turbulence profiles. The depth of the boundary between the species pairs was deeper when winds and surface energy inputs were strong. The vertical partition pattern may also be determined by a difference in feeding strategy between the species pairs. N. plumchrus and N. flemingeri may feed on the enhanced protozoan population of the mixed layer, while N. cristatus and E. bungii feed on particle aggregates settling from above.  相似文献   
167.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
168.
169.
170.
Four large-scale bathymetric maps of the Southern East Pacific Rise and its flanks between 15° S and 19° S display many of the unique features of this superfast spreading environment including abundant seamounts (the Rano Rahi Field), axial discontinuities, discontinuity migration, and abyssal hill variation. Along with a summary of the regional geology, these maps will provide a valuable reference for other sea-going programs on-and off-axis in this area, including the Mantle ELectromagnetic and Tomography (MELT) experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号