首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   19篇
  国内免费   1篇
测绘学   16篇
大气科学   14篇
地球物理   51篇
地质学   47篇
海洋学   14篇
天文学   88篇
综合类   1篇
自然地理   24篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   7篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   9篇
  2009年   10篇
  2008年   12篇
  2007年   11篇
  2006年   22篇
  2005年   13篇
  2004年   16篇
  2003年   12篇
  2002年   9篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有255条查询结果,搜索用时 343 毫秒
31.
Subsurface tile drainage speeds water removal from agricultural fields that are historically prone to flooding. While managed drainage systems improve crop yields, they can also contribute tothe eutrophication of downstream ecosystems, as tile-drained systems are conduits for nutrients to adjacent waterways. The changing climate of the Midwestern US has already altered precipitation regimes which will likely continue into the future, with unknown effects on tile drain water and nutrient loss to waterways. Adding vegetative cover (i.e., as winter cover crops) is one approach that can retain water and nutrients on fields to minimize export via tile drains. In the current study, we evaluate the effect of cover crops on tile drain discharge and soluble reactive phosphorus (SRP) loads using bi-monthly measurements from 43 unique tile outlets draining fields with or without cover crops in two watersheds in northern Indiana. Using four water years of data (n = 844 measurements), we examined the role of short-term antecedent precipitation conditions and variation in soil biogeochemistry in mediating the effect of cover crops on tile drain flow and SRP loads. We observed significant effects of cover crops on both tile drain discharge and SRP loads, but these results were season and watershed specific. Cover crop effects were identified only in spring, where their presence reduced tile drain discharge in both watersheds and SRP loads in one watershed. Varying effects on SRP loads between watersheds were attributed to different soil biogeochemical characteristics, where soils with lower bioavailable P and higher P sorption capacity were less likely to have a cover crop effect. Antecedent precipitation was important in spring, and cover crop differences were still evident during periods of wet and dry antecedent precipitation conditions. Overall, we show that cover crops have the potential to significantly decrease spring tile drain P export, and these effects are resilient to a wide range of precipitation conditions.  相似文献   
32.
GNSS satellite-based augmentation systems for Australia   总被引:1,自引:0,他引:1  
We provided an overview of various satellite-based augmentation systems (SBAS) options for augmented GNSS services in Australia, and potentially New Zealand, with the aim to tease out key similarities and differences in their augmentation capabilities. SBAS can technically be classified into two user categories, namely SBAS for aviation and “non-aviation” SBAS. Aviation SBAS is an International Civil Aviation Organization (ICAO) certified civil aviation safety-critical system providing wide-area GNSS augmentation by broadcasting augmentation information using geostationary satellites. The primary aim was to improve integrity, availability and accuracy of basic GNSS signals for aircraft navigation. On the other hand, “non-aviation” SBAS support numerous GNSS applications using positioning techniques such as wide-area differential-GNSS (DGNSS) and precise point positioning (PPP). These services mainly focus on delivering high-accuracy positioning solutions and guaranteed levels of availability, and integrity remains secondary considerations. Next-generation GNSS satellites capable of transmitting augmentation signals in the L1, L5 and L6 frequency bands will also be explored. These augmentation signals have the data capacity to deliver a range of augmentation services such as SBAS, wide-area DGNSS and PPP, to meet the demands of various industry sectors. In addition, there are well-developed plans to put in place next-generation dual-frequency multi-constellation SBAS for aviation. Multi-constellation GNSS increases robustness against potential degradation of core satellite constellations and extends the service coverage area. It is expected that next-generation SBAS and GNSS will improve accuracy, integrity, availability and continuity of GNSS performance.  相似文献   
33.
Recent technological advances in geosensor networks demand new models of distributed computation with dynamic spatial information. This paper presents a computational model of spatial change in dynamic regions (such as may be derived from discretizations of continuous fields) founded on embeddings of graphs in orientable surfaces. Continuous change, connectedness and regularity of dynamic regions are defined and local transition rules are used to constrain region evolution and enable more efficient inference of a region's state. The model provides a framework for the detection of global high‐level events based on local low‐level ‘snapshot’ spatiotemporal data. The approach has particular relevance to environmental monitoring with geosensor networks, where technological constraints make the detection of global behaviour from local conditions highly advantageous.  相似文献   
34.
35.
This study provides a first attempt at quantifying potential signal bending effects on the GPS reference frame, coordinates and zenith tropospheric delays (ZTDs). To do this, we homogeneously reanalysed data from a global network of GPS sites spanning 14 years (1995.0–2009.0). Satellite, Earth orientation, tropospheric and ground station coordinate parameters were all estimated. We tested the effect of geometric bending and dTEC bending corrections, which were modelled at the observation level based, in part, on parameters from the International Reference Ionosphere 2007 model. Combined, the two bending corrections appear to have a minimal effect on site coordinates and ZTDs except for low latitude sites. Considering five days (DOY 301–305, 28 October–1 November 2001) near ionospheric maximum in detail, they affect mean ZTDs by up to ~1.7 mm at low latitudes, reducing to negligible levels at high latitudes. Examining the effect on coordinates in terms of power-spectra revealed the difference to be almost entirely white noise, with noise amplitude ranging from 0.3 mm (high latitudes) to 2.4 mm (low latitudes). The limited effect on station coordinates is probably due to the similarity in the elevation dependence of the bending term with that of tropospheric mapping functions. The smoothed z-translation from the GPS reference frame to ITRF2005 changes by less than 2 mm, though the effect combines positively with that from the second order ionospheric refractive index term. We conclude that, at the present time, and for most practical purposes, the geometric and dTEC bending corrections are probably negligible at current GPS/reference frame precisions.  相似文献   
36.
37.
Large‐scale testing and qualification of structural systems and their components is crucial for the development of earthquake engineering knowledge and practice. However, laboratory capacity is often limited when attempting larger experiments due to the sheer size of the structures involved. To overcome traditional laboratory capacity limitations, we present a new earthquake engineering testing method: real‐time distributed hybrid testing. Extending current approaches, the technique enables geographically distributed scientific equipment including controllers, dynamic actuators and sensors to be coupled across the Internet in real‐time. As a result, hybrid structural emulations consisting of physical and numerical substructures need no longer be limited to a single laboratory. Larger experiments may distribute substructures across laboratories located in different cities whilst maintaining correct dynamic coupling, required to accurately capture physical rate effects. The various aspects of the distributed testing environment have been considered. In particular, to ensure accurate control across an environment not designed for real‐time testing, new higher level control protocols are introduced acting over an optimised communication system. New large time‐step prediction algorithms are used, capable of overcoming both local actuation and distributed system delays. An overview of the architecture and algorithms developed is presented together with results demonstrating a number of current capabilities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
38.
In some of the world's desert and desert‐marginal areas (e.g. Simpson/Strzelecki, Australia) dunefields preserve well‐developed palaeosols, whereas in other regions with broadly similar climatic regimes and topography (e.g. southwest Kalahari), the dunes are characterized by very poorly developed internal stratigraphy. It has been postulated that dunes such as those in the Kalahari may never have had conditions conducive to soil formation, or that soils once formed but any evidence of palaeosols has been lost due to reworking. This study develops and applies a one‐dimensional numerical model to simulate dune development, soil formation and soil preservation. Variables in the model allowed experimentation on the influence of sediment supply, the time taken for soil to form, and the additional resistance to erosion offered by the soil. Reduced sediment supply plays a vital role in landscape development during periods of initial pedogenesis. Although re‐exhumed palaeosols influence sediment supply, the effect is minimal. Although under almost all parameterized conditions more than half (and up to 80‐90%) of those soils initially formed are lost due to reworking, evidence of their past formation remains in the large majority of profiles, and the dominant factor in controlling the preservation of palaeosols is the frequency of their formation. The implication is that where dunes are found without palaeosols, the most likely (albeit not certain) inference is that they have never formed. Counter‐intuitively, the limited sediment supply means their additional resistance to erosion becomes almost inconsequential to their preservation, at least until the unit approaches complete invulnerability. Short chronostratigraphic hiatuses around palaeosols are normal, and although long gaps can occur, they are extremely infrequent. Where such gaps are observed in field studies, external forcing factors (e.g. climatic or environmental changes) are implied, as they are highly unlikely to result from stochastic net preservation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
39.
The Newberry Volcano EGS Demonstration in central Oregon tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. An EGS reservoir was created by injecting large volumes of cold water, causing existing fractures to slip in shear (known as hydroshearing) generating the seismic waves that can be used to map fracture location and size. At the Newberry Demonstration the final injectivity ranged between 1.4 and 1.7 L/s/MPa a ~6x improvement over the initial injectivity of the well. The injectivity improvement and seismic analysis indicate that previously impermeable fractures were enhanced during the NWG 55-29 stimulation.  相似文献   
40.
Three manipulative experiments were done to estimate the selectivity of conventional and new sizes and configurations of mesh for school prawns, Metapenaeus macleayi, in three south‐eastern Australian recreational fishing gears (haul, push, and scoop nets). The treatment meshes examined were: (1) conventional‐sized, diamond‐shaped mesh used in all gears (20 mm in scoop nets and 30 mm in push and haul nets); (2) 30 mm in scoop nets; and (3) 40‐mm diamond‐ and (4) 23‐mm square‐shaped mesh in all gears. In all experiments, known quantities of school prawns (6–24 mm carapace length (CL)) were placed in purpose‐built enclosures, monitored to ensure no experimental‐induced stress (as measured by changes in L‐lactate in their haemolymph) and the replicate treatments of the various gear configurations deployed. Escapees from the various treatment nets were collected from the enclosures using fine‐meshed nets. Logistic selection curves were derived for all treatment nets and specific comparisons made within and among gears. All nets had 50% retention lengths (L50) comparable to other penaeid‐catching gears with similar mesh sizes, but most had selection ranges (SRs) that were atypically inflated. The large SRs were attributed to a combination of factors that included the mesh geometry and towing speed of the gears and the behaviour of school prawns. The 20‐mm scoop net had the smallest selection parameters, retaining >99% of individuals larger than 13 mm CL. Mesh size in this gear would need to be increased to at least 30 mm to allow some maturing prawns (>18 mm CL) to escape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号