全文获取类型
收费全文 | 191篇 |
免费 | 8篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 17篇 |
地球物理 | 44篇 |
地质学 | 68篇 |
海洋学 | 12篇 |
天文学 | 37篇 |
自然地理 | 17篇 |
出版年
2022年 | 1篇 |
2021年 | 4篇 |
2020年 | 6篇 |
2019年 | 9篇 |
2018年 | 5篇 |
2017年 | 9篇 |
2016年 | 14篇 |
2015年 | 6篇 |
2014年 | 9篇 |
2013年 | 6篇 |
2012年 | 11篇 |
2011年 | 18篇 |
2010年 | 8篇 |
2009年 | 29篇 |
2008年 | 13篇 |
2007年 | 8篇 |
2006年 | 8篇 |
2005年 | 3篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2002年 | 8篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1977年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有202条查询结果,搜索用时 15 毫秒
31.
32.
Alexandre Forest Jean-Éric Tremblay Yves Gratton Johannie Martin Jonathan Gagnon Gérald Darnis Makoto Sampei Louis Fortier Mathieu Ardyna Michel Gosselin Hiroshi Hattori Dan Nguyen Roxane Maranger Dolors Vaqué Cèlia Marrasé Carlos Pedrós-Alió Amélie Sallon Christine Michel Colleen Kellogg Jody Deming Elizabeth Shadwick Helmuth Thomas Heike Link Philippe Archambault Dieter Piepenburg 《Progress in Oceanography》2011,91(4):410-436
Major pathways of biogenic carbon (C) flow are resolved for the planktonic food web of the flaw lead polynya system of the Amundsen Gulf (southeast Beaufort Sea, Arctic Ocean) in spring-summer 2008. This period was relevant to study the effect of climate change on Arctic marine ecosystems as it was characterized by unusually low ice cover and warm sea surface temperature. Our synthesis relied on a mass balance estimate of gross primary production (GPP) of 52.5 ± 12.5 g C m−2 calculated using the drawdown of nitrate and dissolved inorganic C, and a seasonal f-ratio of 0.64. Based on chlorophyll a biomass, we estimated that GPP was dominated by phytoplankton (93.6%) over ice algae (6.4%) and by large cells (>5 μm, 67.6%) over small cells (<5 μm, 32.4%). Ancillary in situ data on bacterial production, zooplankton biomass and respiration, herbivory, bacterivory, vertical particle fluxes, pools of particulate and dissolved organic carbon (POC, DOC), net community production (NCP), as well as selected variables from the literature were used to evaluate the fate of size-fractionated GPP in the ecosystem. The structure and functioning of the planktonic food web was elucidated through inverse analysis using the mean GPP and the 95% confidence limits of every other field measurement as lower and upper constraints. The model computed a net primary production of 49.2 g C m−2, which was directly channeled toward dominant calanoid copepods (i.e. Calanus hyperboreus 20%, Calanus glacialis 10%, and Metridia longa 10%), other mesozooplankton (12%), microzooplankton (14%), detrital POC (18%), and DOC (16%). Bacteria required 29.9 g C m−2, a demand met entirely by the DOC derived from local biological activities. The ultimate C outflow comprised respiration fluxes (82% of the initial GPP), a small sedimentation (3%), and a modest residual C flow (15%) resulting from NCP, dilution and accumulation. The sinking C flux at the model limit depth (395 m) supplied 60% of the estimated benthic C demand (2.8 g C m−2), suggesting that the benthos relied partly on other C sources within the bottom boundary layer to fuel its activity. In summary, our results illustrate that the ongoing decline in Arctic sea ice promotes the growth of pelagic communities in the Amundsen Gulf, which benefited from a ∼80% increase in GPP in spring-summer 2008 when compared to 2004 – a year of average ice conditions and relatively low GPP. However, 53% of the secondary production was generated within the microbial food web, the net ecological efficiency of zooplankton populations was not particularly high (13.4%), and the quantity of biogenic C available for trophic export remained low (6.6 g C m−2). Hence it is unlikely that the increase in lower food web productivity, such as the one observed in our study, could support new harvestable fishery resources in the offshore Beaufort Sea domain. 相似文献
33.
The sodium solubility in silicate melts in the CaO-MgO-SiO2 (CMS) system at 1400 °C has been measured by using a closed thermochemical reactor designed to control alkali metal activity. In this reactor, Na(g) evaporation from a Na2O-xSiO2 melt imposes an alkali metal vapor pressure in equilibrium with the molten silicate samples. Because of equilibrium conditions in the reactor, the activity of sodium-metal oxide in the molten samples is the same as that of the source, i.e., aNa2O(sample) = aNa2O(source). This design also allows to determine the sodium oxide activity coefficient in the samples. Thirty-three different CMS compositions were studied. The results show that the amount of sodium entering from the gas phase (i.e., Na2O solubility) is strongly sensitive to silica content of the melt and, to a lesser extent, the relative amounts of CaO and MgO. Despite the large range of tested melt compositions (0 < CaO and MgO < 40; 40 < SiO2 < 100; in wt%), we found that Na2O solubility is conveniently modeled as a linear function of the optical basicity (Λ) calculated on a Na-free basis melt composition. In our experiments, γNa2O(sample) ranges from 7 × 10−7 to 5 × 10−6, indicating a strongly non-ideal behavior of Na2O solubility in the studied CMS melts (γNa2O(sample) ? 1). In addition to showing the effect of sodium on phase relationships in the CMS system, this Na2O solubility study brings valuable new constraints on how melt structure controls the solubility of Na in the CMS silicate melts. Our results suggest that Na2O addition causes depolymerization of the melt by preferential breaking of Si-O-Si bonds of the most polymerized tetrahedral sites, mainly Q4. 相似文献
34.
35.
Mathieu Bringer Michel Boër Cedric Peignot Gérard Fontan Colette Mercé 《Experimental Astronomy》2001,12(1):33-48
We have developped a new method for the scheduling ofastronomical automatic telescopes, in the framework of theautonomous TAROT instrument. The MAJORDOME software canhandle a variety of observations, constrained, periodic,etc., and produces a timeline for the night, which may bemodified at any time to take into account the specificconditions of the night. The MAJORDOME can also handletarget of opportunity observations without delay. 相似文献
36.
Pierre Polsenaere Nicolas Savoye Henri Etcheber Mathieu Canton Dominique Poirier Steven Bouillon Gwenaël Abril 《Aquatic Sciences - Research Across Boundaries》2013,75(2):299-319
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %). 相似文献
37.
The Coastal Cordillera of central Chile is naturally sensitive to soil erosion due to moderate to steep slopes, intense winter rains when the vegetation cover is scarce, and deeply weathered granitic rocks. In 1965, 60 per cent of its surface was moderately to very severely eroded. Today this process is still largely active, but no data are currently available to evaluate the real extent, distribution and severity of soil degradation on a regional scale. This information is vital to support efficient soil conservation plans. A multi‐scale approach was implemented to produce regional land degradation maps based on remote sensing technologies. Fieldwork has shown that the surface colour or ‘redness’ and the density of coarse fragments are pertinent erosion indicators to describe a typical sequence of soil degradation in the context of mediterranean soil developed on granitic materials and micaschists. Field radiometric experiments concluded that both factors influence the reflectance of natural surfaces and can be modelled using radiometric indices accessible from most satellites operating in the optical domain, i.e. redness index and brightness index. Finally the radiometric indices were successfully applied to SPOT images to produce land degradation maps. Only broad classes of erosion status were discriminated and the detection of the degradation processes was only possible when most of the fertile layer had already been removed. This technology provides decision‐making information required to develop regional soil conservation plans and to prioritize actions between catchment areas, especially in vast inter‐tropical regions where spatialized data are not always readily available. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
38.
The storage capacity of a temperate mixed oak–beech stand was investigated as a function of stand density and species composition. Measurements were performed in selected zones delimited by three neighbouring trees. Three independent approaches were compared: (i) a spraying laboratory experiment to estimate the water storage on foliage before and after dripping; (ii) a mechanistic model describing rainfall partitioning within the forest canopy and providing estimates of foliage storage capacities; and (iii) linear regression analyses to evaluate the canopy (foliage + branches) storage capacity using the relationship between throughfall and rainfall. Good agreement was generally observed between the laboratory experiment and the mechanistic model estimates, while estimations from the regression method tended to exceed those from the other approaches. Storage capacity estimates ranged from 0·22 mm to 0·80 mm for pure oak zones, from 0·24 mm to 1·12 mm for mixed zones and from 0·53 mm to 1·17 mm for pure beech zones. The increase of storage capacity with increasing proportion of beech in the canopy resulted from higher beech LAI compared with oak. Similarly, for mixed and pure beech canopies, storage capacity was higher for high density zones than for low density zones as a result of the increase in LAI with increasing local basal area; in contrast, for pure oak, the storage capacity was not related to basal area because of the lower shade‐tolerance of this species compared with beech. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
39.
Mathieu Mongin David M. Nelson Philippe Pondaven Mark A. Brzezinski Paul Trguer 《Deep Sea Research Part I: Oceanographic Research Papers》2003,50(12):1445-1480
We report the first application of a biogeochemical model in which the major elemental composition of the phytoplankton is flexible, and responds to changing light and nutrient conditions. The model includes two phytoplankton groups: diatoms and non-siliceous picoplankton. Both fix C in accordance with photosynthesis-irradiance relationships used in other models and take up NO3− and NH4+ (and Si(OH)4 for diatoms) following Michaelis-Menten kinetics. The model allows for light dependence of photosynthesis and NO3− uptake, and for the observed near-total light independence of NH4+ uptake and Si(OH)4 uptake. It tracks the resulting C/N ratios of both phytoplankton groups and Si/N ratio of diatoms, and permits uptake of C, N and Si to proceed independently of one another when those ratios are close to those of nutrient-replete phytoplankton. When the C/N or Si/N ratio of either phytoplankton group indicates that its growth is limited by N, Si or light, uptake of non-limiting elements is controlled by the content of the limiting element in accordance with the cell-quota formulation of Droop (J. Mar. Biol. Ass. U.K 54 (1974) 825).We applied this model to the Bermuda Atlantic Time-series Study (BATS) site in the western Sargasso Sea. The model was tuned to produce vertical profiles and time courses of [NO3−], [NH4+] and [Si(OH)4] that are consistent with the data, by adjusting the kinetic parameters for N and Si uptake and the rate of nitrification. The model then reproduces the observed time courses of chlorophyll-a, particulate organic carbon and nitrogen, biogenic silica, primary productivity, biogenic silica production and POC export with no further tuning. Simulated C/N and Si/N ratios of the phytoplankton indicate that N is the main growth-limiting nutrient throughout the thermally stratified period and that [Si(OH)4], although always limiting to the rate of Si uptake by diatoms, seldom limits their growth rate. The model requires significant nitrification in the upper 200 m to yield realistic time courses and vertical profiles of [NH4+] and [NO3−], suggesting that NO3− is not supplied to the upper water column entirely by physical processes. A nitrification-corrected f-ratio (fNC), calculated for the upper 200 m as: (NO3− uptake—nitrification)/(NO3− uptake+NH4+ uptake) has annual values ranging from only 0.05–0.09, implying that 90–95% of the N taken up annually by phytoplankton is supplied by biological regeneration (including nitrification) in the upper 200 m. Reported discrepancies between estimates of organic C export based on seasonal chemical changes and POC export measured at the BATS site can be almost completely resolved if there is significant regeneration of NO3− via organic-matter decomposition in the upper 200 m. 相似文献
40.
This paper presents an overview of some of the most significant, recent to ancient, littoral morpho-sedimentary structures and deposits from the Lake Turkana Basin. We highlight the importance of wave-related sedimentary processes in lakes, and more specifically in rift lakes. In the published literature, references to wave-dominated shorelines are mainly in regards to coastal marine environments. However, numerous modern lakes exhibit typical wave-dominated littoral landforms, and related sedimentary deposits are known from several paleolake successions in the geological record. Wave-related processes are often of relatively minor importance in depositional models for lacustrine environments. Classical models emphasize clastics transported by rivers, which are then distributed by fan-deltas and/or deltas into a water body of fluctuating depth, where reworking of clastics is limited in the littoral domain, and episodic in deep waters. Modern processes in Lake Turkana and the exposed paleolake deposits of the Turkana Basin demonstrate that this view is incomplete. Wave-dominated shorelines are evident (1) for modern Lake Turkana based on prominent and active littoral landforms (e.g., beach ridges, sand spits, washover fans, and arcuate-cuspate deltas); (2) for the Holocene (African Humid Period) climate-driven highstand of Megalake Turkana and its subsequent forced regression based on conspicuous raised beach ridges and spits; and (3) for the Pliocene–Pleistocene (Omo Group, Nachukui Formation) from typical nearshore sedimentary facies and stratigraphic architectures associated with paleolake Turkana. These examples from the Turkana Basin coupled with examples from other lacustrine settings, suggest that wave-dominated clastic shorelines represent significant portions of existing and ancient lake-shores. As this view contrasts with classic depositional models for lakes, notably for those found in rift setting, we also present examples of wave-influenced littoral landforms from other lakes of the East African Rift System. Identifying lacustrine paleoshorelines from typical clastic landforms and deposits is the key to the spatial reconstruction of lakes over time, and to determine transgressive–regressive cycles. Waves action is an important agent in lakes for the erosion, transport, and deposition of clastics at the basin-scale, an aspect that needs to be integrated in sedimentary models. 相似文献