首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   7篇
  国内免费   2篇
测绘学   12篇
大气科学   28篇
地球物理   34篇
地质学   45篇
海洋学   4篇
天文学   6篇
综合类   1篇
自然地理   13篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   8篇
  2017年   5篇
  2016年   11篇
  2015年   12篇
  2014年   8篇
  2013年   16篇
  2012年   6篇
  2011年   8篇
  2010年   9篇
  2009年   9篇
  2008年   3篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1987年   1篇
  1986年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
41.
Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.  相似文献   
42.
A 41-year-long reconstructed annual mean glacier mass balance record from the Cordillera Blanca, Peru, was investigated for its climate sensitivity toward temperature, humidity and precipitation, and its links with the large-scale atmospheric circulation. On interannual timescales precipitation variability appears to be the main driver for glacier mass balance fluctuations in the Cordillera Blanca. This is corroborated by an analysis of the relationship between mass balance variations and local- to regional-scale precipitation variability. Temperature tends to enhance precipitation in driving the mass balance signal, as dry years are often characterized by warm conditions, while wet years usually coincide with cold anomalies. In some years, however, warm and wet or cold and dry conditions coincide, under which circumstances temperature minimizes or even neutralizes the effects of precipitation. Surface energy balance studies have shown that changes in atmospheric humidity significantly affect the melt rates of tropical glaciers, but the lack of long and high-quality in-situ measurements precludes a detailed quantitative assessment of its role on interannual timescales in the Cordillera Blanca. Sea surface temperature anomalies (SSTA) in the tropical Pacific exert the dominant large-scale forcing on interannual time scales, leading to negative mass balance anomalies during El Niño and above average mass balance during La Niña episodes. In general the teleconnection mechanism linking ENSO with glacier mass balance is similar to what has previously been described for the Bolivian Altiplano region. Changes in the upper-tropospheric zonal flow aloft associated with ENSO conditions determine the amount of snowfall during the wet season and thereby significantly affect the glacier mass balance. Because this teleconnection mechanism is spatially unstable and oscillates latitudinally along the subtropical Andes, it affects the Cordillera Blanca in most, but not all years. The relationship between ENSO and glacier mass balance is therefore characterized by occasional ‘break downs’, more common since the mid-1970's, when El Niño years with above average mass balance and La Niña events with negative mass balance have been observed.  相似文献   
43.
The Oligocene depositional history of the Thrace Basin documents a unique paleogeographic position at a junction between the Western Tethys and the Eastern Paratethys. As part of the Tethys, shallow marine carbonate platforms prevailed during the Eocene. Subsequently, a three-staged process of isolation started with the Oligocene. During the Early Rupelian, the Thrace Basin was still part of the Western Tethys, indicated by typical Western Tethyan marine assemblages. The isolation from the Tethys during the Early Oligocene is reflected by oolite formation and endemic Eastern Paratethyan faunas of the Solenovian stage. The third phase reflects an increasing continentalisation of the Thrace Basin with widespread coastal swamps during the Late Solenovian. The mollusc assemblages are predominated by mangrove dwelling taxa and the mangrove plant Avicennia is recorded in the pollen spectra. The final continentalisation is indicated by the replacement of the coastal swamps by pure freshwater swamps and fluvial plains during the Late Oligocene (mammal zone MP 26). This paleogeographic affiliation of the Thrace Basin with the Eastern Paratethys after ~32 Ma contrasts all currently used reconstructions which treat the basin as embayment of the Eastern Mediterranean basin.  相似文献   
44.
Channel erosion along the Carmel river,Monterey county,California   总被引:1,自引:0,他引:1  
Historic maps, photographs, and channel cross-sections show that the channel of the Carmel River underwent massive bank erosion, channel migration, and aggradation in a major flood in 1911, then narrowed and incised by 1939. The channel was stable until 1978 and 1980, when bank erosion affected some reaches but not others. The narrowing and incision were in response to a lack of major floods after 1914 and construction in 1921 of a dam that cut off sediment supply from the most actively eroding half of the basin. Localized erosion in 1978 and 1980 occurred during low magnitude events along reaches whose bank strength had been reduced by devegetation. These events illustrate that the stability of a fluvial system can be disrupted either by application of a large erosive force in a high magnitude event (the 1911 flood) or in a low magnitude event, by reducing the resistance to erosion (bank devegetation). The Carmel River is a potentially unstable system. Its discharge and slope characteristics place it near the threshold between meandering and braided. On the Lower Carmel, the presence of bank vegetation can make the difference between a narrow, stable meandering channel and a wide shifting channel with braided reaches.  相似文献   
45.
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke J Seismol 17(4):1157–1182, (2013a), with the sample of random difference ξ?=?ln(Y 1 )-ln(Y 2 ), in which Y 1 and Y 2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure, the distribution of difference ξ was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference ξ of the sample of peak ground accelerations, and the variance of the individual random components was considerably smaller than that of conventional GMRs. In addition, the dependence of variance on the epicentre distance was considered; however, a dependence of variance on the magnitude was not detected. Finally, the influence of the novel model and the corresponding approximations on PSHA was researched. The applied approximations of distribution of the individual random component were satisfactory for the researched example of PSHA.  相似文献   
46.
Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3–4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.  相似文献   
47.
Statistical modeling of ground motion relations for seismic hazard analysis   总被引:1,自引:0,他引:1  
We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area equivalence, wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(ε 0) of Joyner and Boore, Bull Seism Soc Am 83(2):469–487, 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions, which indicate the appropriate modeling of the GMR by an anisotropic point source model. The constructed distances like the Joyner–Boore distance do not work well for event-specific GMRs. We discover also a strong relation between magnitude and the squared expectation of the PGAs being integrated in the geo-space for the event-specific GMRs. One of our secondary contributions is the simple modeling of anisotropy for a point source model.  相似文献   
48.
49.
The Mesoscale Alpine Programme’s Riviera project investigated the turbulence structure and related exchange processes in an Alpine valley by combining a detailed experimental campaign with high-resolution numerical modelling. The present contribution reviews published material on the Riviera Valley’s boundary layer structure and discusses new material on the near-surface turbulence structure. The general conclusion of the project is that despite the large spatial variability of turbulence characteristics and the crucial influence of topography at all scales, the physical processes can accurately be understood and modelled. Nevertheless, many of the “text book characteristics” like the interaction between the valley and slope wind systems or the erosion of the nocturnal valley inversion need reconsideration, at least for small non-ideal valleys like the Riviera Valley. The project has identified new areas of research such as post-processing methods for turbulence variables in complex terrain and new approaches for the surface energy balance when advection is non-negligible. The exchange of moisture and heat between the valley atmosphere and the free troposphere is dominated by local “secondary” circulations due to the curvature of the valley axis. Because many curved valleys exist, and operational models still have rather poor resolution, parameterization of these processes may be required.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号