首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   4篇
大气科学   15篇
地球物理   37篇
地质学   52篇
海洋学   57篇
天文学   51篇
自然地理   28篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   8篇
  2010年   10篇
  2009年   15篇
  2008年   12篇
  2007年   5篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   15篇
  2002年   9篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1982年   5篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
  1963年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
41.
The uptake mechanism of anthropogenic CO2 in the Kuroshio Extension is examined by a Lagrangian approach using a biogeochemical model embedded in an ocean general circulation model. It is found that the uptake of anthropogenic CO2 is caused mainly by the increase of pCO2 dependency of seawater on temperature, which is caused by greater dissolved inorganic carbon concentration in the modern state than in the pre-industrial state. In contrast with the view of previous studies, the effect of the vertical entrainment, which brings waters that last contacted the atmosphere with the past lower CO2 concentration, is comparatively small. Winter uptake of anthropogenic CO2 increases with the rise of the atmospheric CO2 level, while summer uptake is relatively stable, resulting in a larger seasonal cycle of the uptake. This increase is significant, especially in the Kuroshio Extension region. It is newly suggested that this increase in the Kuroshio Extension region is largely caused by the combined effects of the increased pCO2 dependency of the sea water on the temperature and the seasonal difference in cooling.  相似文献   
42.
During the 1995 Hyogoken Nambu earthquake in Kobe, the ground motion at the filled man-made islands in the Kobe harbor was not as severe as that at the mainland. The building damage was also less compared to that on the mainland. It was found by comparative study of earthquake records that the magnitude of acceleration response on the ground surface decreases at the islands as opposed to the mainland. One dimensional effective stress analysis is adopted in this study. Input data has been generated from test results, e.g. the SPT N-value by standard penetration test and shear wave velocity Vs by PS logging. Results obtained by the analyses showed good agreement with the observed records, which is an indication of the suitability of the adopted analysis procedure. From this study, the followings are concluded. By the increase of SPT N-value of the filled layers, liquefaction near ground surface is restrained and damage modes such as ejection of water and soil can be prevented. Since the ground profile at the islands is that considerably soft filled layer and marine clay layers, etc. are present and the thickness of the surface layer is large, the initial natural period of the ground is above 1 s and the natural period is elongated further under the earthquake excitation, which is deemed to be the principal reason for the reduction of the earthquake motion at the ground surface.  相似文献   
43.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   
44.
Masao  Kametaka  Hiromi  Nagai  Sizhao  Zhu  Masamichi  Takebe 《Island Arc》2009,18(1):108-125
The biostratigraphy of the Middle Permian Gufeng Formation in the northeastern Yangtze platform is examined based on radiolarians. This study is concentrated on the Anmenkou section in the Chaohu area of Anhui Province, China. The Gufeng Formation is divided into the Phosphate Nodule-bearing Mudstone Member (PNMM) and the Siliceous Rock Member (SRM) in ascending order. The former primarily consists of mudstone including abundant phosphate nodules, and the latter consists mainly of alternating beds of chert, siliceous mudstone and mudstone, with intercalations of porous chert. Ammonoids in the mudstone of the lower PNMM are Wordian. Chert, siliceous mudstone and mudstone of the SRM include abundant radiolarians with sponge spicule assemblages suggestive of the Wordian–Capitanian. Albaillellaria are predominant in the lower SRM, while Entactinaria and Spumellaria are predominant in the middle and upper SRM. These radiolarians correspond to three radiolarian assemblage zones: Pseudoalbaillella longtanensis – Pseudoalbaillella fusiformis , Follicucullus monacanthus , and Follicucullus scholasticus – Ruzhencevispongus uralicus . The assemblage of radiolarians and sponge spicule fauna suggests a depositional depth of 150–500 m. The radiolarian fauna of the Gufeng Formation is considered to be representative of the relatively shallow, tropical radiolarian fauna of the Middle Permian eastern Paleotethys.  相似文献   
45.
46.
High(C2/c)-low(P21/c) phase transition in clinoenstatite and pigeonite was successfully observed in situ at high temperatures for the first time under a transmission electron microscope. The phase transition was revealed to possess the characteristics of a first-order transition, due to the coexistence of both phases separated by the sharp interfaces and the nucleation-growth process. The diffusionless and time-independent reaction suggests that the transition occurs athermal-martensitically. Furthermore, the small or even negative thermal hysteresis and the interface motion suggest that the transition is not a typical type but a thermoelastic type of the martensitic transformation. This type of the transformation, studied extensively in metallurgy in relation to shape memory effect, is first recognized in rock-forming minerals.  相似文献   
47.
We discuss Yohkoh SXT observations of stationary giant post-flare arches which occurred on 3–6 May, 1992 and study in detail the last arch, associated with the flare at 19:02 UT on 5 May, which extended above the west limb. The arch was similar to the first giant arch discovered on board the SMM, on 21–22 May, 1980. We demonstrate that the long lifetimes of these structures necessarily imply additional energy input from the underlying active region: otherwise, conduction would cool these arches in less than one hour and even with the unlikely assumption of conduction inhibited, pure radiative cooling would not produce the temperature decrease observed. All arch tops, although varying in brightness, stayed for several days at a fairly constant altitude of 100 000 km, and the arch studied, on 5–6 May, was just a new brightening of the pre-existing decaying structure. The brightening was apparently due to inflow of hot plasma from the flare region. Yohkoh data confirm that these stationary arches are rare phenomena when compared with the rising arches studied in Paper I and with Uchida et al.'s expanding active regions.  相似文献   
48.
49.
Three High Frequency (HF) ocean radar stations were installed around the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current (SWC). The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and 5 deg., respectively. The radar covers a range of approximately 70 km from the coast. The surface current velocity observed by the HF radars was compared with data from drifting buoys and shipboard Acoustic Doppler Current Profilers (ADCPs). The current velocity derived from the HF radars shows good agreement with that observed using the drifting buoys. The root-mean-square (rms) differences were found to be less than 20 cm s−1 for the zonal and meridional components in the buoy comparison. The observed current velocity was also found to exhibit reasonable agreement with the shipboard ADCP data. It was shown that the HF radars clearly capture seasonal and short-term variations of the SWC. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m s−1, in summer and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 40 km. The surface transport by the SWC shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records at Wakkanai and Abashiri. Deceased.  相似文献   
50.
Data from XBT observations in the vicinity of the shoal, Kokushô-sone (30°00′N, 128°30′E) which is located in the current zone of the Kuroshio in the East China Sea, are analysed to show the distribution of isothermal layers. Isothermal layers are found in abundance in and near a cold water region along the slope of the shoal where the existence of upwelling is suggested. It is found that there is a good spatial correlation between the distribution of isothermal layers and that of cold waters along the slope, and that the distribution of isothermal layers is a helpful indicator for elucidating the nature of oceanic structures in the vicinity of the shoal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号