首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   13篇
  国内免费   6篇
测绘学   2篇
大气科学   24篇
地球物理   94篇
地质学   135篇
海洋学   99篇
天文学   57篇
综合类   11篇
自然地理   21篇
  2024年   1篇
  2022年   3篇
  2021年   10篇
  2020年   16篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   6篇
  2015年   9篇
  2014年   17篇
  2013年   21篇
  2012年   16篇
  2011年   15篇
  2010年   12篇
  2009年   22篇
  2008年   25篇
  2007年   14篇
  2006年   23篇
  2005年   24篇
  2004年   11篇
  2003年   12篇
  2002年   13篇
  2001年   5篇
  2000年   15篇
  1999年   11篇
  1998年   8篇
  1997年   6篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有443条查询结果,搜索用时 15 毫秒
241.
242.
To obtain physical insights into the response and feedback of low clouds (C l ) to global warming, ensemble 4?×?CO2 experiments were carried out with two climate models, the Model for Interdisciplinary Research on Climate (MIROC) versions 3.2 and 5. For quadrupling CO2, tropical-mean C l decreases, and hence, acts as positive feedback in MIROC3, whereas it increases and serves as negative feedback in MIROC5. Three time scales of tropical-mean C l change were identified—an initial adjustment without change in the global-mean surface air temperature, a slow response emerging after 10–20?years, and a fast response in between. The two models share common features for the former two changes in which C l decreases. The slow response reflects the variability of C l associated with the El Ni?o-Southern Oscillation in the control integration, and may therefore be constrained by observations. However, the fast response is opposite in the two models and dominates the total response of C l . Its sign is determined by a subtle residual of the C l increase and decrease over the ascending and subsidence regions, respectively. The regional C l increase is consistent with a more frequent occurrence of a stable condition, and vice versa, as measured by lower-tropospheric stability (LTS). The above frequency change in LTS is similarly found in six other climate models despite a large difference in both the mean and the changes in the low-cloud fraction for a given LTS. This suggests that the response of the thermodynamic constraint for C l to increasing CO2 concentrations is a robust part of the climate change.  相似文献   
243.
We report petrological, chemical and Os–Nd–Sr isotopic data for the Gaositai ultramafic complex from northern North China craton (NCC) to reveal its petrogenesis. The complex shows features of Alaskan-type intrusions, including (1) the concentric zoning from dunite core, to clinopyroxenite and hornblendite in the rim, and the common cumulative textures; (2) the abundance of olivine, clinopyroxene and hornblende, and the scarcity of orthopyroxene and plagioclase, and (3) the systematic decrease in Mg# of ferromagnesian phases from core to rim, accompanied by the Fe-enrichment trend of accessory spinel. The different rock types show highly varied, radiogenic Os isotopic ratios (0.129–5.2), and unradiogenic Nd isotopic composition (εNd(t) = −8 to −15), but are homogeneous in ISr ratios (0.7054–0.7066). The (187Os/188Os)i ratios are found to be anti-correlated with εNd(t) values and whole-rock Mg# as well. These data suggest significant crustal contamination during magma evolution. The crustal contaminants are dominantly Archean mafic rocks in the lower crust, and subordinate TTG gneisses at shallower crustal levels. The parental magma was hydrous picritic in composition, derived from an enriched lithospheric mantle source above a subduction zone. The zoned pattern of the complex formed probably through “flow differentiation” of a rapidly rising crystal mush along a fracture zone that was developed as a result of lithospheric extension in a back-arc setting in the northern margin of the NCC at ca. 280 Ma.  相似文献   
244.
Concentrations of Re and Os, and the isotopic composition of Os have been measured in the Japan Sea sediments to assess the response of the Japan Sea to glacial–interglacial climate change and associated weathering fluxes. The osmium concentrations in the sediment samples analyzed vary from 59 to 371 pg/g, and 187Os/188Os from 0.935 to 1.042. Only 187Os/188Os of sediment samples from dark laminations deposited under suboxic to anoxic conditions and having elevated concentrations of Re and Os, and with ≥ 80% hydrogenous Os are explained in terms of seawater composition. Lower 187Os/188Os were observed for sediments deposited during the last glacial maximum (LGM) when planktonic foraminifera from the Japan Sea recorded lighter oxygen isotopic composition. Decrease in dissolved Os fluxes from continents and/or change in the composition of the dissolved load to the Japan Sea are suggested as the driving mechanisms for the observed lower LGM 187Os/188Os. The results of this study, coupled with lower 187Os/188Os during the last glacial observed at other sites from ocean basins with different lithology and contrasting sediment accumulation rates, suggest that this trend is characteristic of the global oceans.

Data from this study show that the Japan Sea recorded higher 187Os/188Os during the current interglacial coinciding with excursions of oxygen isotopic compositions of planktonic foraminifera to heavier values. This is explained in terms of preferential release of 187Os during deglacial weathering and/or higher continental Os flux driven by warm and wet climate. This study demonstrates that Os isotopic composition of reducing margin sediments has immense potential to track variations in the seawater composition. In addition, 187Os/188Os of reducing sediments may be used to draw inferences about local paleoceanographic processes in semi-enclosed basins such as the Japan Sea.  相似文献   

245.
Arsenic contamination of well water is a serious issue in the Nawalparasi District of the Terai region in Nepal. A local investigation was carried out on 137 tube wells in 24 communities of the district in December 2011. The investigation revealed that the average arsenic concentration in the tube wells was 350 μg/L, and that nearly 98 % of the wells exceeded the WHO guideline arsenic level limit of 10 μg/L. Highly contaminated well water, with more than 400 μg/L of arsenic, was found within the limited depth ranges of 18–22 and 50–80 m. High arsenic levels exceeding 500 μg/L were detected in shallower wells at Patkhauli, Mahuawa, Thulokunwar, and Goini located between 27.517° and 27.543°N and between 83.648° and 83.748°E. Boring sampling at five communities of Kashiya, Goini, Sanokunwar, Thulokunwar, and Mahuawa revealed two aquifers located at the two depths around 14–22 and 41–50 m in each community. Dark gray or black-colored peaty clay layers rich in organic matter were distributed at depths of 18–21 m beside the upper aquifers with high arsenic concentration in each community. Positive correlations were shown between iron and arsenic in the sediments from the five communities. It can be inferred that these results were caused by dissolution of iron-oxyhydroxide molecules with arsenic from solid phases. Microbial metabolisms have a great potential to induce the dissolution and release arsenic attached on the solid phases into aqueous phases depending on the level of redox potential and pH.  相似文献   
246.
Elastic moduli of forsterite were measured between 300 and 1,200 K (? 1.6 times the Debye temperature) by the Rectangular Parallelepiped Resonance method. All the moduli decrease regularly with temperature. A summary of the results is as follows:
Elastic moduli C ij in GPa  相似文献   
247.
We have determined the position of deuterium atoms in δ-AlOOD by neutron powder diffraction at ambient pressure. As previously reported by theoretical and experimental studies, the deuterium atoms are located in the tunnel formed by the chains of AlO6 octahedra. The data are best fit with the P21 nm structure, producing bond lengths of D–O1 of 1.552(2) Å, O2–D of 1.020(2) Å and O1–O2 of 2.571(2). This study confirms that the hydrogen bond is asymmetric at ambient conditions in agreement with recent single-crystal synchrotron study for δ-AlOOH.  相似文献   
248.
Spatial inverse problems in the Earth Sciences are often ill-posed, requiring the specification of a prior model to constrain the nature of the inverse solutions. Otherwise, inverted model realizations lack geological realism. In spatial modeling, such prior model determines the spatial variability of the inverse solution, for example as constrained by a variogram, a Boolean model, or a training image-based model. In many cases, particularly in subsurface modeling, one lacks the amount of data to fully determine the nature of the spatial variability. For example, many different training images could be proposed for a given study area. Such alternative training images or scenarios relate to the different possible geological concepts each exhibiting a distinctive geological architecture. Many inverse methods rely on priors that represent a single subjectively chosen geological concept (a single variogram within a multi-Gaussian model or a single training image). This paper proposes a novel and practical parameterization of the prior model allowing several discrete choices of geological architectures within the prior. This method does not attempt to parameterize the possibly complex architectures by a set of model parameters. Instead, a large set of prior model realizations is provided in advance, by means of Monte Carlo simulation, where the training image is randomized. The parameterization is achieved by defining a metric space which accommodates this large set of model realizations. This metric space is equipped with a “similarity distance” function or a distance function that measures the similarity of geometry between any two model realizations relevant to the problem at hand. Through examples, inverse solutions can be efficiently found in this metric space using a simple stochastic search method.  相似文献   
249.
New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks yielded middle Eocene ages.On the other hand,the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge-island arc affiliated Coto block of the ophiolite complex,together with isotopic age datings of its dikes and mafic cumulate rocks,also yielded Eocene ages.This offers the possibility that the Zambales Ophiolite Complex could have:(1)evolved from a Mesozoic arc(Acoje block)that split to form a Cenozoic back-arc basin(Coto block),(2)through faulting,structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or(3)through the interplay of slab rollback,slab break-off and,at a later time,collision with a microcontinent fragment,caused the formation of an island arc-related ophiolite block(Acoje)that migrated trench-ward resulting into the generation of a back-arc basin(Coto block)with a limited subduction signature.This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation.  相似文献   
250.
 The viscosity of albite (NaAlSi3O8) melt was measured at high pressure by the in situ falling-sphere method using a high-resolution X-ray CCD camera and a large-volume multianvil apparatus installed at SPring-8. This system enabled us to conduct in situ viscosity measurements more accurately than that using the conventional technique at pressures of up to several gigapascals and viscosity in the order of 100 Pa s. The viscosity of albite melt is 5.8 Pa s at 2.6 GPa and 2.2 Pa s at 5.3 GPa and 1973 K. Experiments at 1873 and 1973 K show that the decrease in viscosity continues to 5.3 GPa. The activation energy for viscosity is estimated to be 316(8) kJ mol−1 at 3.3 GPa. Molecular dynamics simulations suggest that a gradual decrease in viscosity of albite melt at high pressure may be explained by structural changes such as an increase in the coordination number of aluminum in the melt. Received: 6 January 2001 / Accepted: 27 August 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号