首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3461篇
  免费   157篇
  国内免费   44篇
测绘学   87篇
大气科学   277篇
地球物理   747篇
地质学   1340篇
海洋学   251篇
天文学   615篇
综合类   12篇
自然地理   333篇
  2023年   14篇
  2021年   43篇
  2020年   68篇
  2019年   81篇
  2018年   92篇
  2017年   99篇
  2016年   118篇
  2015年   104篇
  2014年   123篇
  2013年   185篇
  2012年   120篇
  2011年   174篇
  2010年   154篇
  2009年   205篇
  2008年   174篇
  2007年   171篇
  2006年   160篇
  2005年   139篇
  2004年   136篇
  2003年   102篇
  2002年   96篇
  2001年   69篇
  2000年   67篇
  1999年   60篇
  1998年   54篇
  1997年   57篇
  1996年   55篇
  1995年   44篇
  1994年   28篇
  1993年   32篇
  1992年   27篇
  1991年   40篇
  1990年   22篇
  1989年   27篇
  1988年   31篇
  1987年   39篇
  1986年   24篇
  1985年   34篇
  1984年   29篇
  1983年   18篇
  1982年   27篇
  1981年   31篇
  1980年   28篇
  1979年   17篇
  1978年   15篇
  1977年   20篇
  1976年   17篇
  1974年   26篇
  1973年   21篇
  1971年   14篇
排序方式: 共有3662条查询结果,搜索用时 31 毫秒
611.
Igneous intrusions in coal seams are found in 80 % of coal mines in the Huaibei coalfield, China, and coal and gas outburst accidents have occurred 11 times under a 120-m-thick sill in the Haizi mining field. The magma’s heat had a significant controlling effect on coal seam gas occurrence. Based on theoretical analysis, experimental tests and site validation, we analyzed the temperature distribution following magma intrusion into coal measure strata and the variations in multiple physical parameters and adsorption/desorption characteristics between the underlying coal seams beneath the sill in the Haizi mining field and coal seams uninfluenced by magma intrusion in the adjacent Linhuan mining field. The research results show that the main factors controlling the temperature distribution of the magma and surrounding rocks in the cooling process include the cooling time and the thickness and initial temperature of the magmatic rock. As the distance from sill increases, the critical effective temperature and the duration of sustained high temperatures decrease. The sill in the Haizi mining field significantly promoted coal seam secondary hydrocarbon generation in the thermally affected area, which generated approximately 340 m3/t of hydrocarbon. In the magma-affected area, the metamorphic grade, micropore volume, amount of gas adsorption, initial speed of gas desorption, and amount of desorption all increase. Fluid entrapment by sills usually causes the gas pressure and gas content of the underlying coal seams to increase. As a result, the outburst risks from coal seams increases as well.  相似文献   
612.
A simple method for estimating ventilation time scales from overturning stream functions is proposed. The stream function may be computed using either geometric coordinates or a generalized vertical coordinate, such as potential density (salinity in our study). The method is tested with a three-dimensional circulation model describing an idealized semi-enclosed ocean basin ventilated through a narrow strait over a sill, and the result is compared to age estimates obtained from a passive numerical age tracer. The best result is obtained when using the stream function in salinity coordinates. In this case, the reservoir-averaged advection time obtained from the overturning stream function in salinity coordinates agrees rather well with the mean age of the age tracer, and the corresponding maximum ages agree very well.  相似文献   
613.
A three-dimensional model has been modified to describe the complex interactions between hydrodynamics, sediment dynamics and biological parameters in the presence of Zostera noltei. The model treats seagrass leafs as flexible blades that bend under hydrodynamic forcing and alter the local momentum and turbulence fluxes and, therefore, the benthic shear conditions; these changes cause related changes to the mass balance at the boundary of the bed, in turn affecting the suspended matter in the column and ultimately primary productivity and the growth of the dwarf-grass. Modelling parameters related to the impact of Z. noltei to the local flow and to erosion and deposition rates were calibrated using flume experimental measurements; results from the calibration of the model are presented and discussed. The coupled model is applied in the Arcachon Bay, an area with high environmental significance and large abundance of dwarf-grass meadows. In the present paper, results from preliminary applications of the model are presented and discussed; the effectiveness of the coupled model is assessed comparing modelling results with available field measurements of suspended sediment concentrations and seagrass growth parameters. The model generally reproduces sediment dynamics and dwarf-grass seasonal growth in the domain efficiently. Investigations regarding the effects of the vegetation to the near-bed hydrodynamics and to the sediment suspension in the domain show that dwarf-grass meadows play an important part to velocity attenuation and to sediment stabilisation, with flow and suspended sediment concentrations damping, compared to an unvegetated state, to reach 35–50 and 65 %, respectively, at peak seagrass growth.  相似文献   
614.
615.
Historic Hg mining in the Cache Creek watershed in the Central California Coast Range has contributed to the downstream transport of Hg to the San Francisco Bay-Delta. Different aspects of Hg mobilization in soils, including pedogenesis, fluvial redistribution of sediment, volatilization and eolian transport were considered. The greatest soil concentrations (>30 mg Hg kg−1) in Cache Creek are associated with mineralized serpentinite, the host rock for Hg deposits. Upland soils with non-mineralized serpentine and sedimentary parent material also had elevated concentrations (0.9–3.7 mg Hg kg−1) relative to the average concentration in the region and throughout the conterminous United States (0.06 mg kg−1). Erosion of soil and destabilized rock and mobilization of tailings and calcines into surrounding streams have contributed to Hg-rich alluvial soil forming in wetlands and floodplains. The concentration of Hg in floodplain sediment shows sediment dispersion from low-order catchments (5.6–9.6 mg Hg kg−1 in Sulphur Creek; 0.5–61 mg Hg kg−1 in Davis Creek) to Cache Creek (0.1–0.4 mg Hg kg−1). These sediments, deposited onto the floodplain during high-flow storm events, yield elevated Hg concentrations (0.2–55 mg Hg kg−1) in alluvial soils in upland watersheds. Alluvial soils within the Cache Creek watershed accumulate Hg from upstream mining areas, with concentrations between 0.06 and 0.22 mg Hg kg−1 measured in soils 90 km downstream from Hg mining areas. Alluvial soils have accumulated Hg released through historic mining activities, remobilizing this Hg to streams as the soils erode.  相似文献   
616.
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies.Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.  相似文献   
617.
In the polymetamorphic Austroalpine Matsch Unit (European Eastern Alps) Cretaceous upper greenschist facies metamorphism overprinted Variscan and Permian magmatic and metamorphic assemblages. Mineral compositional and (micro-)structural data of metapelites and metapegmatites document different mechanisms of interrelated deformation and (re-)equilibration during Cretaceous overprinting: i) Microfractures in relic garnet represented pathways for material transport, and thus established material exchange between intragranular domains and the matrix. Major element equilibration by fast diffusion along microfractures contrasts with limited volume diffusion in adjacent host garnet. ii) Syn-tectonic breakdown of staurolite initially to paragonite, then chloritoid allows correlating reaction progress with the formation of different fracture sets. iii) Syn-tectonic mineral growth with shape-preferred orientation in foliation domains contrasts with radial growth in microlithons and strain shadows of the mylonitic foliation. iv) Syn-tectonic unmixing of pre-existing oligoclase (an14–16) produced fine-grained aggregates of two supposedly coexisting plagioclase-phases (an3–6 and an20–25) in strain shadows of the oligoclase-clasts. v) Pre-existing deformation-induced heterogeneities in the spatial distribution of phases and their preferred orientation influence the kinetics of phase equilibration. Understanding the mechanisms of the mutual interrelation between deformation and phase equilibration is a prerequisite for deducing PT-constraints from strained metamorphic rocks. New garnet—whole rock Sm-Nd data from metapegmatites indicate their emplacement at 263–280 Ma and provide an important age constraint on the interrelated deformation and re-equilibration processes.  相似文献   
618.
The paper discusses the results of the research devoted to the preservation of cultural heritage carried out within last two decades in Slovakia. The aim of the study depended on monitoring of selected castle rocks showing instability problems due to extremely slow displacements of creep character. Apart from traditional methods of investigation at one test site (Spis Castle), authors implemented in their work the study of thermal expansion of the rocks as a result of seasonal periodic temperature changes having potential influence on displacements and numerical modeling in order to understand better the landslide failure mechanism. The results obtained from all study sites confirmed that even slow movements have to be implemented into preservation and stabilization works in order to safeguard the sites of great historic value.  相似文献   
619.
The objective of this study is to develop an analytical methodology to evaluate the effectiveness ofvibro stone column (S. C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquethctionin saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densification during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and DC. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils.  相似文献   
620.
A key parameter for understanding the geodynamics of a terrestrial planet is the size of its core. Numerical evaluation of 28 different interior structure models of Mercury, Venus, Earth, the Moon, and Mars suggests that there is an almost linear relationship between the core radius and the extent of the seismic P-wave core shadow. A scaling law is derived from a simple mantle density and velocity model that permits the interpretation of respective seismic measurements on terrestrial planetary bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号