首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   23篇
  国内免费   2篇
测绘学   37篇
大气科学   45篇
地球物理   156篇
地质学   176篇
海洋学   32篇
天文学   86篇
综合类   3篇
自然地理   41篇
  2023年   3篇
  2022年   7篇
  2021年   18篇
  2020年   9篇
  2019年   14篇
  2018年   27篇
  2017年   23篇
  2016年   22篇
  2015年   25篇
  2014年   26篇
  2013年   33篇
  2012年   20篇
  2011年   28篇
  2010年   22篇
  2009年   31篇
  2008年   26篇
  2007年   29篇
  2006年   31篇
  2005年   17篇
  2004年   19篇
  2003年   8篇
  2002年   21篇
  2001年   11篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   4篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1972年   2篇
  1971年   4篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有576条查询结果,搜索用时 15 毫秒
171.
Activity and stability phases as well as geomorphic processes within the Critical Zone are well known. Erosion and deposition of sediments represent activity; soils represent geomorphic stability phases. Data are presented from a 4 m deep sediment section that was dated by luminescence techniques. Upslope erosion and resulting sedimentation started in the late Pleistocene around 18 ka until 12 ka. Conditions at the study site then changed, which led to the formation of a well-developed soil. Radiocarbon dating of the organic matter yielded ages between 8552 and 8995 cal. BP. From roughly 6.2 to 5.4 ka another activity phase accompanied by according sediment deposition buried the soil and a new soil, a Cambisol, was formed at the surface. The buried soil is a strongly developed Luvisol. The black colors in the upper part of the buried soil are not the result of pedogenic accumulation of normal organic matter within an A-horizon. Nuclear magnetic resonance spectroscopy clearly documents the high amount of aromatic components (charcoal), which is responsible for the dark color. This indicates severe burning events at the site and the smaller charcoal dust (black carbon) was transported to deeper parts of the profile during the process of clay translocation.  相似文献   
172.
Recent studies have demonstrated that compartmentalized pools of water preferentially supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water) in some catchments, a phenomenon referred to as ecohydrologic separation. The omission of processes accounting for ecohydrologic separation in standard applications of hydrological models is expected to influence estimates of water residence times and plant water availability. However, few studies have tested this expectation or investigated how ecohydrologic separation alters interpretations of stores and fluxes of water within a catchment. In this study, we compare two rainfall‐runoff models that integrate catchment‐scale representations of transport, one that incorporates ecohydrologic separation and one that does not. The models were developed for a second‐order watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the site where ecohydrologic separation was first observed, and calibrated against multiple years of stream discharge and chloride concentration. Model structural variations caused mixed results for differences in calibrated parameters and differences in storage between reservoirs. However, large differences in catchment storage volumes and fluxes arise when considering only mobile water. These changes influence interpreted residence times for streamflow‐generating water, demonstrating the importance of ecohydrologic separation in catchment‐scale water and solute transport.  相似文献   
173.
Abstract

This study quantifies global changes in irrigation requirements for areas presently equipped for irrigation of major crop types, using climate projections from 19 GCMs up to the 2080s. Analysis is based on results from the global eco-hydrological model LPJmL that simulates the complex and dynamic interplay of direct and indirect climate change effects upon irrigation requirements. We find a decrease in global irrigation demand by ~17% in the ensemble median, due to a combination of beneficial CO2 effects on plants, shorter growing periods and regional precipitation increases. In contrast, increases of >20% are projected with a high likelihood (i.e. in more than two thirds of the climate change scenarios) for some regions, including southern Europe, and, with a lower likelihood, for parts of Asia and North America as well. If CO2 effects were not accounted for, however, global irrigation demand would hardly change, and increases would prevail in most regions except for southern Asia (where higher precipitation is projected). We stress that the CO2 effects may not be realized everywhere, that irrigation requirements will probably increase further due to growing global food demand (not considered here), and that a significant amount of water to meet future irrigation requirements will have to be taken from fossil groundwater, environmental flow reserves or diverted rivers.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Konzmann, M., Gerten, D., and Heinke, J., 2013. Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrological Sciences Journal, 58 (1), 1–18.  相似文献   
174.
175.
The effect of erosional detachment, transport, and deposition of topsoil on the stock of soil organic matter (SOM) and its association with soil minerals has been a focus of a growing number of studies. A particularly lively debate is currently centered on the questions of whether terrestrial sedimentation of previously eroded SOM may constitute a relevant sink for atmospheric carbon dioxide (CO2), and how ‘stable’ such carbon (C) might be on multidecadal timescales. In this commentary, we illustrate how redistribution of eroded SOM within a landscape can create situations that are not adequately described by the jargon commonly used to characterize C turnover dynamics. We argue that more quantitative and scientifically rigorous categories are needed to describe soil C turnover and to promote the development of innovative, numerical models of C dynamics in landscapes characterized by significant mass movement. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
176.
Extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical analyses were combined to determine the Fe bearing minerals in recent lake sediments from Baldeggersee (Switzerland). The upper section of a laminated sediment core, deposited under eutrophic conditions, was compared to the lower part from an oligotrophic period. Qualitative analysis of FeK EXAFS agreed well with chemical data: In the oligotrophic section Fe(II)–O and Fe(III)–O specieswere present, whereas a significant fraction of Fe(II)–S sulfides was strongly indicated in the eutrophic part. A statistical analysis was performed by least square fitting of normalized reference spectra. The set of reference minerals included Fe(III) oxides and Fe(II) sulfides, carbonates and phosphates. In the oligotrophic regime no satisfying fit was obtained using the set of reference spectra, indicating that siderite (FeCO3) was not present in a significant amount in these carbonate-rich sediments. Simulated EXAFS spectra for a(Cax, Fe1-x)CO3solid solution allowed reconstructing the specificfeatures of the experimental spectra, suggesting that this phase was the dominant Fe carrier in the oligotrophic section of the core. In the eutrophic part, mackinawite was positively identified and represented the dominant Fe(II) sulfide phase. This finding agreed with chemical extraction, which indicated that18–40 mol% of Fe was contained in the acid volatile iron sulfide fraction. EXAFS spectra of the eutrophic section were best fitted by considering the admixture of mackinawite and the Fe–Ca carbonate phase inferred to be predominant in the oligotrophic regime.  相似文献   
177.
In the present study, we performed gastropod analyses on loess–palaeosol sequences from northeast Armenia (Southern Caucasia) covering at least three glacial–interglacial cycles. The elaborated ecostratigraphy shows significant patterns of species composition related to the succession of pedocomplexes and loess, respectively. Pedocomplexes included species that can be associated with high-grass to forest-steppe biomes, indicating increased humidity for these sections compared to the loess layers. In contrast, loess layers that relate to glacial periods are associated with gastropod species of semidesert environments with shrub- and shortgrass-steppes, indicating semiarid to arid conditions. Furthermore, the loess deposits do not show any evidence for cold-adapted gastropod species. Therefore, we suggest that average July temperatures in the study area were above 10 °C, even during periods of loess deposition. Consequently, we propose that the limiting factor for tree growth during glacial periods was aridity, rather than temperature. In addition, we observe environmental differences between the various glacial times, with our results indicating a trend towards steadily increasing aridity in Southern Caucasia across the Middle to Late Pleistocene.  相似文献   
178.
A toposequence of Holocene soils located between 1100–2400 m asl in the Italian Alps served as the basis for the following analyses: the weathering of limestone and dolomite, the calculation of mass balances, understanding the formation of pedogenic Fe and Al, the determination of soil mineral and clay mineral reactions and transformation and the measurement of accumulation and stabilisation mechanisms of soil organic matter. Leaching of carbonates is most intense at the lower elevations, although calcite and dolomite have a higher solubility at low temperatures. The pCO2 in the soil is higher at lower elevations and weathering is driven mainly by carbonic acids. At higher elevations, organic acids appear to determine the mineral transformations and weathering reactions to a greater extent. This suggests that two very different weathering regimes (carbonic and organic acid weathering) exist along the toposequence. The transformation of mica into vermiculite is the main process in both the clay and fine-earth fraction. Weathering of silicate minerals started even before the carbonates had been completely removed from the soils. The transformation mechanisms of silicate minerals in the A and O horizon at higher elevations was at least as intensive as that at the climatically warmer sites. The neoformation of pedogenetic clays at climatically cooler sites was slightly greater than that at the warmer sites. However, the formation rate of secondary Fe and Al phases was more pronounced at lower elevation, which means that this process seemed to be driven dominantly by carbonic acid (weathering of primary minerals). Soil organic matter (SOM) abundance in the mineral soil is nearly 15 kg/m2 at all sites and, surprisingly, no climate-driven effect could be detected. In general, the preservation and stabilisation of SOM was due to poorly crystalline Al and Fe phases and vermiculite, regardless of some variations in the composition of the parent material (varying calcite/dolomite ratio).  相似文献   
179.
In this study, we present a novel approach to measure fundamental processes of cohesive sediment erosion. The experimental setup consists of a laboratory erosion flume (SETEG) and a photogrammetric method to detect sediment erosion (PHOTOSED). Detailed data are presented for three erosion experiments, which were conducted with a natural non-cohesive/cohesive sediment mixture at increasing sediment depths (4, 8, 16 cm). In each experiment, the sediment was exposed to a set of incrementally increasing shear stresses and the erosion was measured dynamically, pixel-based, and approximate to the process scale given the resolution of PHOTOSED. This enables us to distinguish between (i) individual emerging erosion spots caused by surface erosion and (ii) large holes torn open by detached aggregate chunks. Moreover, interrelated processes were observed, such as (iii) propagation of the erosion in the longitudinal and lateral direction leading to merging of disconnected erosion areas and (iv) progressive vertical erosion of already affected areas. By complementing the (bulk) erosion volume profiles with additional quantitative variables, which contain spatial information (erosion area, specific deepening, number of disconnected erosion areas), conclusions on the erosion behaviour (and the dominant processes) can be drawn without requiring qualitative information (such as visual observations). In addition, we provide figures indicating the spatio-temporal erosion variability and the (bulk) erosion rates for selected time periods. We evaluate the variability by statistical quantities and show that significant erosion is mainly confined to only a few events during temporal progression, but then considerably exceeds the time-averaged median of the erosion (factors between 7.0 and 16.0). Further, we point to uncertainties in using (bulk) erosion rates to assess cohesive sediment erosion and particularly the underlying processes. As a whole, the results emphasise the need to measure cohesive sediment erosion with high spatio-temporal resolution to obtain reliable and robust information. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
180.
Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N–S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5 km over 10 km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号