首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   13篇
  国内免费   1篇
测绘学   9篇
大气科学   30篇
地球物理   66篇
地质学   97篇
海洋学   29篇
天文学   48篇
综合类   2篇
自然地理   27篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   10篇
  2018年   11篇
  2017年   12篇
  2016年   6篇
  2015年   12篇
  2014年   9篇
  2013年   12篇
  2012年   14篇
  2011年   13篇
  2010年   10篇
  2009年   33篇
  2008年   17篇
  2007年   14篇
  2006年   14篇
  2005年   12篇
  2004年   15篇
  2003年   11篇
  2002年   8篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1987年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1969年   1篇
  1961年   1篇
  1957年   1篇
  1921年   1篇
排序方式: 共有308条查询结果,搜索用时 14 毫秒
11.
Stable carbon and oxygen isotope values from single bryozoan colonies were used to reconstruct the paleoenvironments of the Early to Middle Miocene (Ottnangian to Badenian) sediments of the Central Paratethys. This approach utilizes a locally abundant allochem while avoiding matrix and multiple allochem contamination from bulk rock samples. Bryozoan colonies (and a few foraminifera and rock matrix samples) from 14 localities yielded 399 carbon and oxygen isotope values. Data from six of the localities (15 % of the total number of samples) were interpreted as having been diagenetically altered and were rejected. The remaining data indicate a primarily localized upwelling signal with lesser variation caused by global climatic and regional tectonic forcing of sea level, salinity, and temperature. Paleotemperatures were calculated to range from 12 to 21 °C. Despite potential taxonomic and diagenetic problems, bryozoan colonies are a powerful, underutilized source of paleoenvironmental carbon and oxygen isotope data.  相似文献   
12.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
13.
Summary The principle of the sampling method of submicron aerosols with the Aerosol Spectrometer is briefly described and the analytic procedures for deriving the frequency-size distributionC d (d) from photo-micrographic particle counts and microphotometric light scattering measurementsS d (d) of identical areas of the particle deposit.After initial analysis the deposits were exposed to elevated temperature (80° C) for several hours and re-analyzed. Four representative aerosol types, originating from the high sea, the shore, vegetation, and metropolitan smog are analyzed in this manner for the range (0.2 d1.3 ). All show a very marked decrease, even disappearance of the smaller particles (d<0.5 ) and shrinkage of the larger particles (d<1 ). By far the largest effect is observed for the smog aerosols.This volatility appears to be caused by either evaporation of the particle substace or by the gradual oxidation of its organic components into more volatile products (CO2, H2O).  相似文献   
14.
It is now well established that a number of terrestrial and aquatic microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. However, this biomineralization has never been shown to occur in plant tissues, nor has the structure of a natural Mn(IV) biooxide been characterized in detail. We show that the graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with constant Zn:Mn and Ca:Mn atomic ratios (0.46 and 0.38, respectively) when grown on a contaminated sediment. This new phase is so far the Zn-richest manganate known to form in nature (chalcophanite has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual examination of root fragments under a microscope shows black precipitates about ten to several tens of microns in size, and their imaging with backscattered and secondary electrons demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) with a micro-focused beam can be quantitatively described by a single-phase model consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by interlayer Mn and Ca. Diffracting crystallites have a domain radius of 33 Å in the ab plane and contain only 1.2 layers (8.6 Å) on average. Since this biogenic Mn oxide consists mostly of isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. Individual Mn layers are probably held together in the Mn–Zn precipitates by stabilizing organic molecules. Zinc biomineralization by plants likely is a defense mechanism against toxicity induced by excess concentrations of this metal in the rhizosphere.  相似文献   
15.
This article evaluates whether a sediment budget for the South River, Maryland, can be coupled with metals data from sediment cores to identify and quantify sources of historic metal inputs to marsh and subtidal sediments along the estuary. Metal inputs to estuarine marsh sediments come from fluvial runoff and atmospheric deposition. Metal inputs to subtidal sediments come from atmospheric deposition, fluvial runoff, coastal erosion, and estuarine waters. The metals budget for the estuary indicates that metal inputs from coastal erosion have remained relatively constant since 1840. Historical variations in metal contents of marsh sediments have probably resulted primarily from increasing atmospheric deposition in this century, but prior to 1900 may reflect changing fluvial sources, atmospheric inputs, or factors not quantified by the budget. Residual Pb, Cu, and Zn in the marsh sediments not accounted for by fluvial inputs was low to moderate in 1840, decreased to near zero circa 1910, and by 1987 had increased to levels that were one to ten times greater than those of 1840. Sources of variability in subtidal cores could not be clearly discerned because of geochemical fluxes, turbulent mixing, and bioturbation within the cores. The sediment-metal budgeting approach appears to be a viable method for delineating metal sources in small, relatively simple estuarine systems like the South River and in systems where recent deposition (for example, prograding marshes) prevents use of deep core analysis to identify background levels of metal. In larger systems or systems with more variable sources of sediment and metal input, however, assumptions and measurement errors in the metal budgeting approach suggest that deep core analysis and normalization techniques are probably preferable for identifying anthropogenic impacts.Field and laboratory research conducted at the Department of Geography, University of Maryland, College Park, Maryland, 20742, USAField and laboratory research conducted at the Marine and Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, 20742, USA  相似文献   
16.
Latest Pleistocene and Holocene glacier variations in the European Alps   总被引:1,自引:0,他引:1  
In the Alps, climatic conditions reflected in glacier and rock glacier activity in the earliest Holocene show a strong affinity to conditions in the latest Pleistocene (Younger Dryas). Glacier advances in the Alps related to Younger Dryas cooling led to the deposition of Egesen stadial moraines. Egesen stadial moraines can be divided into three or in some cases even more phases (sub-stadials). Moraines of the earliest and most extended advance, the Egesen maximum, stabilized at 12.2 ± 1.0 ka based on 10Be exposure dating at the Schönferwall (Tyrol, Austria) and the Julier Pass-outer moraine (Switzerland). Final stabilization of moraines at the end of the Egesen stadial was at 11.3 ± 0.9 ka as shown by 10Be data from four sites across the Alps. From west to east the sites are Piano del Praiet (northwestern Italy), Grosser Aletschgletscher (central Switzerland), Julier Pass-inner moraine (eastern Switzerland), and Val Viola (northeastern Italy). There is excellent agreement of the 10Be ages from the four sites. In the earliest Holocene, glaciers in the northernmost mountain ranges advanced at around 10.8 ± 1.1 ka as shown by 10Be data from the Kartell site (northern Tyrol, Austria). In more sheltered, drier regions rock glacier activity dominated as shown, for example, at Julier Pass and Larstig valley (Tyrol, Austria). New 10Be dates presented here for two rock glaciers in Larstig valley indicate final stabilization no later than 10.5 ± 0.8 ka. Based on this data, we conclude the earliest Holocene (between 11.6 and about 10.5 ka) was still strongly affected by the cold climatic conditions of the Younger Dryas and the Preboreal oscillation, with the intervening warming phase having had the effect of rapid downwasting of Egesen glaciers. At or slightly before 10.5 ka rapid shrinkage of glaciers to a size smaller than their late 20th century size reflects markedly warmer and possibly also drier climate. Between about 10.5 ka and 3.3 ka conditions in the Alps were not conducive to significant glacier expansion except possibly during rare brief intervals. Past tree-line data from Kaunertal (Tyrol, Austria) in concert with radiocarbon and dendrochronologically dated wood fragments found recently in the glacier forefields in both the Swiss and Austrian Alps points to long periods during the Holocene when glaciers were smaller than they were during the late 20th century. Equilibrium line altitudes (ELA) were about 200 m higher than they are today and about 300 m higher in comparison to Little Ice Age (LIA) ELAs. The Larstig rock glacier site we dated with 10Be is the type area for a postulated mid-Holocene cold period called the Larstig oscillation (presumed age about 7.0 ka). Our data point to final stabilization of those rock glaciers in the earliest Holocene and not in the middle Holocene. The combined data indicate there was no time window in the middle Holocene long enough for rock glaciers of the size and at the elevation of the Larstig site to have formed. During the short infrequent cold oscillations between 10.5 and 3.3 ka small glaciers (less than several km2) may have advanced to close to their LIA dimensions. Overall, the cold periods were just too short for large glaciers to advance. After 3.3 ka, climate conditions became generally colder and warm periods were brief and less frequent. Large glaciers (for example Grosser Aletschgletscher) advanced markedly at 3.0–2.6 ka, around 600 AD and during the LIA. Glaciers in the Alps attained their LIA maximum extents in the 14th, 17th, and 19th centuries, with most reaching their greatest LIA extent in the final 1850/1860 AD advance.  相似文献   
17.
18.
We report results of hydrothermal experiments on four alluvial zircons from Sri Lanka, which cover a wide range of radiation damage, at 450 °C and 1.3 kbar for 744 h with 2 M CaCl2 solution as reactive fluid. After the hydrothermal treatment, the most metamict samples show micrometer-thick reaction rims, which surround apparently unreacted zircon, as revealed by cathodoluminescence (CL) and Nomarski differential interference contrast (NDIC) images. These rims have sharp, curved, and transgressive boundaries with unreacted zircon and are, in some cases, spread out along cracks. The thickness of reaction rims increases with increasing cumulated !-dosage of the starting materials. The reaction rims are strongly enriched in Ca (up to 7000 ppm) and a water species and depleted in radiogenic Pb, Zr, and Si, as revealed by electron microprobe analyses. A significant Th loss from the reaction rims was detected in the case of the most metamict sample, whereas U remained in the structure. FT-infrared spectrometry and X-ray diffraction measurements revealed that the bulk run products were recrystallized. Using micro-Raman spectrometry, we were able to demonstrate that differential recrystallization took place. The reaction rims are strongly recrystallized, whereas the unreacted grain interiors underwent only minor recrystallization. Recrystallization of the rims is accompanied by an enhancement of the integral CL intensity. It is suggested that recrystallization in the reaction rims was catalyzed by water infiltration and ion exchange and prevented significant congruent zircon dissolution under the given experimental conditions. Previous zircon studies have shown that (1) a transgressive morphology, (2) a reduced Th-U ratio, and (3) an enhanced CL emission are also characteristics of rims in zircons from high-grade metamorphic rocks. Based on these similarities between natural and experimentally produced rims, it is suggested that leaching-catalyzed recrystallization is an important alteration process in zircon under wet geological conditions and can account for many complex core-rim structures found in natural zircons. Furthermore, the strong enrichment of Ca in the reaction rims supports previous assumptions that high Ca concentrations in natural zircons are of secondary origin. It is suggested that lower U-Pb concordia intercept ages obtained from single-phase zircons with high Ca contents date a leaching event.  相似文献   
19.
Stress sensitivity of stylolite morphology   总被引:1,自引:0,他引:1  
Stylolites are rough surfaces that form by localized stress-induced dissolution. Using a set of limestone rock samples collected at different depths from a vertical section in Cirque de Navacelles (France), we study the influence of the lithostatic stress on the stylolites morphology on the basis of a recent morphogenesis model. We measured the roughness of a series of bedding-parallel stylolites and show that their morphology exhibits a scaling invariance with two self-affine scaling regimes separated by a crossover-length (L) at the millimeter scale consistent with previous studies. The importance of the present contribution is to estimate the stylolite formation stress σ from the sample position in the stratigraphic series and compare it to the crossover-length L using the expected relationship: L  σ ?2. We obtained a successful prediction of the crossover behavior and reasonable absolute stress magnitude estimates using relevant parameters: depth of stylolite formation between 300 to 600 m with corresponding normal stress in the range of 10–18 MPa. Accordingly, the stylolite morphology contains a signature of the stress field during formation and we thus suggest that stylolites could be used as paleo-stress gauges of deformation processes in the upper crust.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号