首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   53篇
  国内免费   8篇
测绘学   20篇
大气科学   73篇
地球物理   199篇
地质学   374篇
海洋学   88篇
天文学   171篇
综合类   4篇
自然地理   65篇
  2023年   5篇
  2022年   6篇
  2021年   18篇
  2020年   20篇
  2019年   14篇
  2018年   33篇
  2017年   30篇
  2016年   41篇
  2015年   30篇
  2014年   42篇
  2013年   56篇
  2012年   52篇
  2011年   60篇
  2010年   41篇
  2009年   64篇
  2008年   55篇
  2007年   52篇
  2006年   51篇
  2005年   42篇
  2004年   24篇
  2003年   34篇
  2002年   36篇
  2001年   27篇
  2000年   20篇
  1999年   15篇
  1998年   15篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   4篇
  1993年   9篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1967年   1篇
排序方式: 共有994条查询结果,搜索用时 171 毫秒
991.
Since the Carboniferous, tropical latitudes have been the site of formation of many economic coal deposits, most of which have a restricted range of mineralogical composition as a result of their depositional environment, climatic conditions, and diagenesis. Mineralogical and microscopic investigations of tropical peats from Tasek Bera, Peninsular Malaysia, were performed in order to better understand some of these factors controlling the nature, distribution and association of inorganic matter in peat-forming environments. Distribution and nature of the inorganic fraction of peat deposits give insight into the weathering conditions and detrital input into the mire system. Because the inorganic composition of peat deposits is determined by plant communities, height of water table, and climate, the results of the quantitative and qualitative analysis can be used to reconstruct palaeoclimatic conditions.Tasek Bera is a peat-accumulating basin in humid tropical Malaysia with organic deposits of low- to high-ash yield and thus representative of many ancient peat-forming environments. Clay minerals dominate the mineralogical composition of the peat and organic-rich sediments, while quartz and clays dominate the underlying siliciclastic deposits. Kaolinite is the most abundant clay mineral in the organic deposits with minor amounts of illite and vermiculite. Particle size analyses indicate that >50% of the inorganic detrital fraction is <2 μm. Most detrital quartz grains range in size from fine silt to fine sand. The fine sand fraction accounts for a maximum of 5 wt.% of the inorganic constituents. In addition, abundant biogenic and non-biogenic, Al- and Si-rich amorphous matter occur. In the ombrotrophic (low-nutrient) environment, biogenic inorganic material contributes up to >75% of the ash constituents. As a consequence, the vegetational communities make an important contribution to the inorganic and overall ash composition of peats and coals. The ash content of the often inundated peat consists on average of 10% opaline silica from diatoms and sponge spicules, while the ash of the top deposits may have up to 50% biogenic silica. Hence, Al- and Si-hydroxides and the opaline silica from diatoms and sponges represent a large repository of Al and Si, which may form the basis of mineral transformation, neoformation and alteration processes during coalification of the peat deposits. As a result, most coal deposits from paleotropical environments are anticipated to have little to no biogenic inorganic material but high amounts of secondary clays, such as kaolinite (detrital kaolinite, resilisified kaolinite, or desilisified gibbsite) or illite, and various amounts of detrital and authigenetic quartz.  相似文献   
992.
 Mafic and ultramafic rocks sampled in the Garrett transform fault at 13°28′S on the East Pacific Rise (EPR) provide insight on magmatic processes occurring under a fast-spreading ridge system. Serpentinized harzburgite from Garrett have modal, mineral and bulk chemical compositions consistent with being mantle residue of a high degree of partial melting. Along with other EPR localities (Terevaka transform fault and Hess Deep), these harzburgites are among the most residual and depleted in magmatophile elements of the entire mid-ocean ridge system. Geothermometric calculations using olivine-spinel pairs indicate a mean temperature of 759 ± 25 °C for Garrett residual harzburgite similar to the average of 755 °C for tectonite peridotites from slow-spreading ridges. Results of this study show that mid-ocean ridge peridotites are subject to both fractional melting and metasomatic processes. Evidence for mantle metasomatism is ubiquitous in harzburgite and is likely widespread in the entire Garrett peridotite massif. Magma-harzburgite interactions are very well preserved as pyroxenite lenses, plagioclase dunite pockets or dunitic wall rock to intrusive gabbros. Abundant gabbroic rocks are found as intrusive pockets and dikes in harzburgite and have been injected in the following sequence: olivine-gabbro, gabbro, gabbronorite, and ferrogabbro. The wide variety of magmas that crystallized into gabbros contrast sharply with present-day intratransform basalts, which have a highly primitive composition. Ferrogabbro dikes have been intruded at the ridge-transform intersection and as they represent the last event of a succession of gabbros intrusive into the peridotite, they likely constrain the origin of the entire peridotite massif to the same location. In peridotite massifs from Pacific transform faults (Garrett and Terevaka), primitive to fractionated basaltic magmas have flowed and crystallized variable amounts of dunite (±plagioclase) and minor pyroxenite, followed by a succession of cumulate gabbroic dikes which have extensively intruded and modified the host harzburgitic rocks. The lithosphere and style of magmatic activity within a fast-slipping transform fault (outcrops of ultramafic massif, discontinuous gabbro pockets intrusive in peridotite, magnesian and phyric basalts) are more analogous to slow-spreading Mid-Atlantic Ridge type than the East Pacific Rise. Received: 13 October 1997 / Accepted: 5 February 1999  相似文献   
993.
The Beni Bousera massif forms part of the Sebtide units in the internal Rif Mountain (Morocco). It is mainly composed of mantle peridotites surrounded by crustal metamorphic rocks (kinzigites, micaschists, and schists). The serpentinization affects all of peridotite massif to various degrees. Serpentinization is concentrated at the top of the peridotites, along the mylonitized zone, and in the NE part of the massif. It is manifested by the formation of mesh and hourglass textures along the tectonic foliation in the highly serpentinized peridotites; and brecciated texture in the least serpentinized peridotites. Pyroxene minerals are still intact hosting few serpentine veins. These petrographic features are consistent with the geochemical data, marked by the increasing of LOI and decreasing of MgO and FeO toward the top of the massif and Aaraben fault. The Raman characterization of serpentine with the brecciated mesh and hourglass textures correspond to lizardite type whereas the serpentine with the vein texture is formed by lizardite + chrysotile.  相似文献   
994.
In the Western Gneiss Region in Norway, mafic eclogites form lenses within granitoid orthogneiss and contain the best record of the pressure and temperature evolution of this ultrahigh-pressure (UHP) terrane. Their exhumation from the UHP conditions has been extensively studied, but their prograde evolution has been rarely quantified although it represents a key constraint for the tectonic history of this area. This study focused on a well-preserved phengite-bearing eclogite sample from the Nordfjord region. The sample was investigated using phase-equilibrium modelling, trace-element analyses of garnet, trace- and major-element thermobarometry and quartz-in-garnet barometry by Raman spectroscopy. Inclusions in garnet core point to crystallization conditions in the amphibolite facies at 510–600°C and 11–16 kbar, whereas chemical zoning in garnet suggests growth during isothermal compression up to the peak pressure of 28 kbar at 600°C, followed by near-isobaric heating to 660–680°C. Near-isothermal decompression to 10–14 kbar is recorded in fine-grained clinopyroxene–amphibole–plagioclase symplectites. The absence of a temperature increase during compression seems incompatible with the classic view of crystallization along a geothermal gradient in a subduction zone and may question the tectonic significance of eclogite facies metamorphism. Two end-member tectonic scenarios are proposed to explain such an isothermal compression: Either (1) the mafic rocks were originally at depth within the lower crust and were consecutively buried along the isothermal portion of the subducting slab or (2) the mafic rocks recorded up to 14 kbar of tectonic overpressure at constant depth and temperature during the collisional stage of the orogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号