首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   5篇
测绘学   4篇
大气科学   31篇
地球物理   16篇
地质学   197篇
海洋学   13篇
天文学   14篇
自然地理   54篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   20篇
  2012年   7篇
  2011年   3篇
  2010年   13篇
  2009年   20篇
  2008年   9篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   7篇
  2003年   14篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   14篇
  1997年   21篇
  1996年   15篇
  1995年   5篇
  1994年   17篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   16篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1981年   8篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有329条查询结果,搜索用时 11 毫秒
321.
Trapping of sustained turbidity currents by intraslope minibasins   总被引:1,自引:0,他引:1  
Depositional turbidity currents have filled many intraslope minibasins with sediment creating targets for petroleum exploration. The dynamics of sustained turbidity currents and their depositional characteristics are investigated in a scaled physical model of a minibasin. Each turbidity current deposited a downstream thinning wedge of sediment near the inlet. Farther downstream the turbidity current was ponded by a barrier. The ponded part of the turbidity current was separated from the sediment‐free water above by a relatively sharp, horizontal settling interface indicating highly Froude‐subcritical flow. The very slow moving flow within the ponded zone created conditions for the passive rainout of suspended sediment onto the bed. In the lower part of the ponded zone, the concentration and mean grain‐size of the sediment in suspension tended to be relatively uniform in both the vertical and streamwise directions. As a result, the deposit emplaced in the ponded zone showed only a weak tendency toward downstream fining and was passively draped over the bed in such a way that irregularities in the inerodible bed were accurately reflected. The discharge of suspended sediment overflowing the downstream end of the minibasin was significantly less than the inflow discharge, resulting in basin sediment trapping efficiencies >95%. A simple model is developed to predict the trapping of sediment within the basin based on the relative magnitudes of the input discharge of turbid water and the detrainment discharge of water across the settling interface. This model shows a limiting case in which an intraslope basin captures 100% of the sediment from a ponded turbidity current, even through a succession of sustained flow events, until sediment deposition raises the settling interface above the downstream lip of the minibasin. This same process defines one of the mechanisms for minibasin filling in nature, and, when this mechanism is operative, the trap efficiency of sediment can be expected to be high until the minibasin is substantially filled with sediment.  相似文献   
322.
Long sediment cores were collected in spring 2006 from Lake Petén Itzá, northern Guatemala, in water depths ranging from 30 to 150 m, as part of an International Continental Scientific Drilling Program project. The sediment records from deep water consist mainly of alternating clay, gypsum and carbonate units and, in at least two drill sites, extend back >200 kyr. Most of the lithostratigraphic units are traceable throughout the basin along seismic reflections that serve as seismic stratigraphic boundaries and suggest that the lithostratigraphy can be used to infer regional palaeoenvironmental changes. A revised seismic stratigraphy was established on the basis of integrated lithological and seismic reflection data from the basin. From ca 200 to ca 85 ka, sediments are dominated by carbonate‐clay silt, often interbedded with sandy turbidites, indicating a sediment regime dominated by detrital sedimentation in a relatively humid climate. At ca 85 ka, an exposure horizon consisting of gravels, coarse sand and terrestrial gastropods marks a lake lowstand or partial basin desiccation, indicating dry climate conditions. From ca 85 to ca 48 ka, transgressive carbonate‐clay sediments, overlain by deep‐water clays, suggest a lake level rise and subsequent stabilization at high stage. From ca 48 ka to present, the lithology is characterized by alternating clay and gypsum units. Gypsum deposition correlates with Heinrich Events (i.e. dry climate), whereas clay units coincide with more humid interstadials.  相似文献   
323.
324.
The discovery of whale fossils from Eocene strata in the Fayum Depression has provoked interest in the life and lifestyle of early whales. Excellent outcrop exposure also affords the dataset to develop sedimentological and stratigraphic models within the Eocene strata. Previous work generally asserts that the thick, sand‐rich deposits of the Fayum Depression represent shoreface and barrier island successions with fine‐grained lagoonal and fluvial associations capping progradational successions. However, a complete absence of wave‐generated sedimentary structures, a preponderance of thoroughly bioturbated strata and increasingly proximal sedimentary successions upwards are contrary to accepted models of the local sedimentological and stratigraphic development. This study considers data collected from two Middle to Upper Eocene successions exposed in outcrop in the Wadi El‐Hitan and Qasr El‐Sagha areas of the Fayum Depression to determine the depositional affinities of Fayum strata. Based on sedimentological and ichnological data, five facies associations (Facies Association 1 to Facies Association 5) are identified. The biological and sedimentological characteristics of the reported facies associations indicate that the whale‐bearing sandstones (Facies Association 1) record distal positions in a large, open, quiescent marine bay that is abruptly succeeded by a bay‐margin environment (Facies Association 2). Upwards, marginal‐marine lagoonal and shallow‐bay parasequences (Facies Association 3) are overlain by thick deltaic distributary channel deposits (Facies Association 4). The capping unit (Facies Association 5) represents a transgressive estuarine depositional environment. The general stratigraphic evolution resulted from a regional, tectonically controlled second‐order cycle, associated with northward regression of the Tethys. Subordinate cycles (i.e. third‐order and fourth‐order cycles) are evidenced by several Glossifungites‐ichnofacies demarcated discontinuities, which were emplaced at the base of flooding surfaces. The proposed depositional models recognize the importance of identifying and linking ichnological data with physical–sedimentological observations. As such – with the exception of wave‐generated ravinement surfaces – earlier assertions of wave‐dominated sedimentation can be discarded. Moreover, this study provides important data for the recognition of (rarely reported) completely bioturbated sand‐dominated offshore to nearshore sediments (Facies Association 1) and affords excellent characterization of bioturbated inclined heterolithic stratification of deltaic deposits. Another outcome of the study is the recognition that the whales of the Fayum Depression are restricted to the highstand systems tracts, and lived under conditions of low depositional energy, low to moderate sedimentation rates, and (not surprisingly) in fully marine waters characterized by a high biomass.  相似文献   
325.
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum.  相似文献   
326.
Most phenocryst populations in volcanic rocks, and those preservedin shallow-level igneous intrusions, are clustered (variouslyreferred to as clots, clumps or glomerocrysts). These clustersof crystals are the building blocks that accumulate to formthe high-porosity, touching crystal frameworks from which igneouscumulates form. Examination of touching crystal frameworks inolivine- (komatiite cumulates and experimental charges) andplagioclase-dominant crystal populations (Holyoke flood basalt,Connecticut, USA) reveal complex, high-porosity, clustered crystalarrangements. Olivine touching frameworks in komatiite flowsare interpreted to form in hundreds of days. Plagioclase frameworksare calculated to have formed in less than 17 years for a crystalgrowth rate of 1 x 10-10 mm/s to less than 3 years for a growthrate of 5 x 10-10 mm/s based on crystal size distributions.The origin of crystal clusters is likely to involve either (ora combination of) heterogeneous nucleation, remobilization ofcumulate mushes or crystals sticking together during settlingand/or flow. The spatial distribution pattern of clustered crystalframeworks from both natural and experimental examples constrainsfields on spatial packing diagrams that allow the identificationof touching and non-touching crystal populations, and furtherimprove our understanding of crystal packing arrangements andcluster size distributions. KEY WORDS: cumulates; CSD; komatiite; basalt; spatial packing; textural analysis  相似文献   
327.
We present the results of melting experiments on a moderatelydepleted peridotite composition (DMM1) at 10 kbar and 1250–1390°C.Specially designed experiments demonstrate that liquids extractedinto aggregates of vitreous carbon spheres maintained chemicalcontact with the bulk charge down to melt fractions of  相似文献   
328.
Intense post-depositional alteration has profoundly affected sandstones in the volcanic portions of Early Archaean (3·5–3·3 Ga) greenstone belts. The mineralogy and bulk compositions of most grains have been completely destroyed by pervasive metasomatism, but grain textures are commonly well preserved. Consequently, microtextural information coupled with present alteration compositions as determined petrographically can be used to estimate original framework modes. Silicified Early Archaean volcaniclastic sandstones assigned to the Panorama Formation and Duffer Formation, Warrawoona Group, eastern Pilbara Block, Western Australia, were originally composed of volcanic (VRF) and sedimentary (SRF) rock fragments, volcanic quartz, feldspar, traces of ferromagnesian minerals and pumice. Only volcanic megaquartz remained stable during alteration. All other primary components were replaced by granular microcrystalline quartz (GMC) and sericite. In most areas, the sandstones were composed of dacitic to rhyolitic VRFs, now totally replaced by sericite-poor GMC and recognized by preserved microporphyritic textures. In a few areas, quartz-poor dacitic to andesitic(?) VRFs dominated the detrital assemblage. Minor SRFs and mafic VRFs, now replaced by GMC, are recognized on the basis of colour, internal structures, and internal textures, including skeletal, possible spinifex textures. Detrital feldspar is represented by blocky, sericite-rich grain pseudomorphs. A semi-quantitative point-count scheme, developed for the analysis of heavily altered sandstones, indicates the following primary detrital-mode ranges for Panorama arenites: quartz, 0–28%; feldspar, 0–28%, VRFs, 58–86%, and SRFs 0–25%. In about half the point-counted samples, feldspar could not be distinguished from rock fragments. In such cases, both were counted as one grain type, Lv', which makes up from 84 to 100% of the framework modes of these rocks. These sands were derived from a terrane composed largely of fresh felsic volcanic rocks and sediments, but locally including minor mafic, ultramafic, and sedimentary rocks. Much, but not all, of the felsic volcaniclastic sand represents reworked pyroclastic debris. There is no evidence for contributions from plutonic or metamorphic sources. The Panorama modal assemblage represents a provenance that is lithologically more restricted than that of Archaean greywackes and other siliciclastic units common in the sedimentary portions of these same Early Archaean greenstone belts and younger greenstone belts (3·0–2·7 Ga).  相似文献   
329.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号