全文获取类型
收费全文 | 330篇 |
免费 | 5篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 32篇 |
地球物理 | 16篇 |
地质学 | 203篇 |
海洋学 | 13篇 |
天文学 | 14篇 |
自然地理 | 53篇 |
出版年
2019年 | 1篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2013年 | 19篇 |
2012年 | 7篇 |
2011年 | 3篇 |
2010年 | 13篇 |
2009年 | 20篇 |
2008年 | 9篇 |
2007年 | 12篇 |
2006年 | 12篇 |
2005年 | 15篇 |
2004年 | 8篇 |
2003年 | 14篇 |
2002年 | 6篇 |
2001年 | 5篇 |
2000年 | 3篇 |
1999年 | 6篇 |
1998年 | 14篇 |
1997年 | 22篇 |
1996年 | 15篇 |
1995年 | 6篇 |
1994年 | 18篇 |
1993年 | 7篇 |
1992年 | 11篇 |
1991年 | 11篇 |
1990年 | 16篇 |
1989年 | 8篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1985年 | 6篇 |
1984年 | 6篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 8篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有335条查询结果,搜索用时 0 毫秒
31.
MICHAEL BROWN 《Journal of Metamorphic Geology》1998,16(1):3-22
Southwest Japan is divided into Outer and Inner Zones by the Median Tectonic Line (MTL), a major transcurrent fault. The Outer Zone is composed of the Sambagawa (high-pressure intermediate or high P/T type metamorphism), Chichibu and Shimanto Belts. In the Inner Zone, the Ryoke Belt (andalusite– sillimanite or low P/T type metamorphism) was developed mainly within a Jurassic accretionary complex. This spatial relationship between high P/T type and low P/T type metamorphic belts led Miyashiro to the idea that metamorphic belts were developed as ‘paired’ systems. Textural relationships and petrogenetically significant mineral assemblages in pelites from the Ryoke Belt imply peak P–T conditions of ≈5 kbar and up to 850 °C in migmatitic garnet–cordierite rocks from the highest-grade metamorphic zone. It is likely that the thermal anomaly responsible for metamorphism of the Ryoke Belt was related to a segment of the Farallon–Izanagi Ridge as it subducted under the eastern margin of the Asian continent during the Cretaceous. The sequence of mineral assemblages developed in pelites implies a metamorphic field gradient with shallow dP/dT slope, inferred to have been generated by a nested set of hairpin-like ‘clockwise’P–T paths. These P–T paths are characterized by limited prograde thickening, minor decompression at peak-T , and near-isobaric cooling, features that may be typical of P–T paths in low P/T type metamorphic belts caused by ridge subduction. A ridge subduction model for the Ryoke Belt implies that juxtaposition of the high-P/T metamorphic rocks of the Sambagawa Belt against it was a result of terrane amalgamation. Belt-parallel ductile stretching, recorded as syn-metamorphic, predominantly constrictional strain in both Ryoke and Sambagawa Belt rocks, and substantial sinistral displacement on the MTL are consistent with left-lateral oblique convergence. Diachroneity in fast cooling of the Ryoke Belt is implied by extant thermochronological data, and is inferred to relate to progressive SW to NE docking of the Sambagawa Belt. Thus, an alternative interpretation of ‘paired’ metamorphic belts in Japan is that they represent laterally contemporaneous terranes, rather than outboard and inboard components of a trench/arc ‘paired’ system. Amalgamation of laterally contemporaneous terranes during large translations of forearcs along continental margins may explain other examples of ‘paired’ metamorphic belts in the geological record. 相似文献
32.
33.
PHYSICO‐GEOCHEMICAL AND MINERAL COMPOSITION OF NEEM TREE SOILS AND RELATION TO ORGANIC PROPERTIES 下载免费PDF全文
WILLIAM C. MAHANEY JOAN VOROS RAMANATHAN KRISHNAMANI RONALD G.V. HANCOCK SUSAN AUFREITER MICHAEL W. MILNER CHRISTOPHER C.R. ALLEN 《Geografiska Annaler: Series A, Physical Geography》2016,98(2):143-154
The Neem tree, the oil of which has a long history of pesticide, fertilizer and medicinal use in India, has been studied extensively for its organic compounds. Here we present a physical, mineralogical and geochemical database resulting from the analyses of two Neem soil profiles (epipedons) in India. Neem tree derivatives are used in the manufacture of a variety of products, from anti‐bacterial drugs and insecticides to fertilizers and animal feeds. A preliminary geochemical and mineralogical analysis of Neem soils is made to explore the potential for chemical links between Neem tree derivatives and soils. Physical soil characteristics, including colour, texture and clay mineralogy, suggest the two pedons formed under different hydrological regimes, and hence, are products of different leaching environments, one well‐drained site, the other poorly drained. Geochemically, the two Neem soils exhibit similarities, with elevated concentrations of Th and rare earth elements. These elements are of interest because of their association with phosphates, especially monazite and apatite, and the potential link to fertilizer derivatives. Higher concentrations of trace elements in the soils may be linked to nutritional derivatives and to cell growth in the Neem tree. 相似文献
34.
Development of Arctic sea-ice organisms under graded snow cover 总被引:5,自引:0,他引:5
In 1988, the short-term response of sea-ice organisms to manipulated changes in snow cover (no snow cover, natural snow cover, natural snow cover + black foil) was investigated in one ice floe located in the East Greenland Current northwest of Svalbard over a period of three weeks. Autotrophic organisms (flagellates and diatoms) were concentrated in the lowermost 30 cm of the floe. In the field without snow cover, the highest diatom concentrations were observed, consisting nearly entirely of pennate forms, together with a maximum bacterial abundance. The community of larger protozoa and smaller metazoa was dominated by ciliates. Under natural conditions the flora consisted of both flagellates and diatoms, while turbellaria were the dominating animals. In the darkened field, the organism concentrations decreased with time. The results indicate that brine drainage, induced by changes in ice temperature, can reduce concentrations of ice organisms over short time scales. 相似文献
35.
J. YANG J. I. GOLDSTEIN E. R. D. SCOTT J. R. MICHAEL P. G. KOTULA T. PHAM T. J. McCOY 《Meteoritics & planetary science》2011,46(9):1227-1252
Abstract– The microstructures of six reheated iron meteorites—two IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb’s Mill (Blake’s Iron), and Babb’s Mill (Troost’s Iron)—were characterized using scanning and transmission electron microscopy, electron‐probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700–750 °C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstätten pattern. The other four, which show no trace of their original microstructure, were heated above 600–700 °C and recrystallized to form 10–20 μm wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close‐packed planes aligned. Formation of homogeneous 20 μm wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 °C or approximately 1 h at 1300 °C. All six irons contain approximately 5–10 μm wide taenite grains with internal microprecipitates of kamacite and nanometer‐scale M‐shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100–10,000 yr. Un‐decomposed high‐Ni martensite (α2) in taenite—the first occurrence in irons—appears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M‐shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock‐hatched kamacite, recrystallization, microprecipitates of taenite, and shock‐melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 °C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb‐Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite ( Blichert‐Toft et al. 2010 ). 相似文献
36.
Calc-alkaline olivine andesite and two-pyroxene dacite of theTaos Plateau volcanic field evolved in an open magmatic system.mg-numbers of spatially and temporally associated ServilletaBasalt (5461) and ohvine andesite (4959) are comparableand preclude fractional crystallization of ferromagnesian mineralsas the major differentiation process. If Servilleta olivinetholeiite is assumed to be the parental magma type, enrichmentsof highly incompatible trace elements (up to 17 ?) oVer concentrationsin the basalts require that andesitic and dacitic magmas containa substantial proportion of assimilated crust. Isotopic compositionsof andesite and dacite, which have slightly higher 87Sr/86Srratios than the basalts but lower 143Nd/144Nd, 206Pb/204Pb,207Pb/204Pb, and 208Pb/204Pb ratios, are consistent with contaminationof parental basalt by old, low Rb/Sr, low U/Pb, and low Th/Pbcontinental crust. Concentrations of highly incompatible traceelements in andesite and dacite lavas are decoupled from majorelement compositions; the highest concentrat ions of these elementsoccur in andesitic, rather than dacitic compositions, and andesitelavas are more variable in trace element contents. Assimilationof heterogeneous crust concurrent with fractional crystallizationof varying mineral assemblages could cause this decoupled behavior.High mg-numbers in andesite and dacite, skeletal olivine phenocrysts,and reversely zoned pyroxene phenocrysts are manifestationsof mafic replenishment and magma mixing in the Taos Plateaumagmatic system. Taos Plateau volcanoes are monolithologic and are distributedin a semi-concentric zoned pattern that is a reflection of thecomplex subvolcanic magmatic system. A central focus of basaltshields developed above the main basaltic conduit system; thesemagmas contain 1035% admixed andesitic and dacitic magma.Basalt shields are surrounded by a partial ring of olivine andesiteshield volcanoes, where replenishment of basaltic magma providedthe heat necessary for prolonged assimilation of crust, resultingin intermediate-composition lavas. Dacite shields are locatedaround the periphery of the more mafic volcanoes and reflecta decrease in mafic input on the fringes of the magmatic system. 相似文献
37.
MICHAEL C. RYGEL CHRISTOPHER R. FIELDING KERRIE L. BANN TRACY D. FRANK LAUREN BIRGENHEIER STUART C. TYE 《Sedimentology》2008,55(5):1517-1540
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions. 相似文献
38.
MICHAEL J. HAMBREY WERNER EHRMANN 《Boreas: An International Journal of Quaternary Research》2004,33(4):300-318
The Mount Cook area in the Southern Alps of New Zealand is heavily glacierized with numerous peaks over 3000 m a.s.l. feeding several large valley glaciers. The region is subject to rapid tectonic uplift and heavy precipitation (up to 15 m per year). This paper describes the clast roundness, clast shape and textural characteristics associated with five glaciers (Fox, Franz Josef, Hooker, Mueller and Tasman) in terms of inputs to the glacier system, transport by the glaciers and reworking following glacial deposition. Inputs include rockfall, alluvial fan and avalanche material delivered to the surface of valley glaciers. Basal debris, where observed at the terminus of two glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by subglacial and proglacial streams. The dominant facies are (i) boulder gravel with mainly angular clasts on the steep slopes above the glaciers, (ii) sandy boulder gravel, with mainly angular and subangular clasts, forming lateral and end moraines, and (iii) sandy boulder/cobble gravel with mainly subrounded clasts, and sand, which represent glacially transported sediment reworked by braided rivers. Diamicton is rare in the contemporary glacial environment. Since most sediment associated with glaciers in the Southern Alps lacks unambiguous indications of glacial transport, interpretation of similar sediments in the geological record should not necessarily exclude the involvement of glacial processes. 相似文献
39.
40.