首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   8篇
地质学   9篇
海洋学   1篇
天文学   3篇
自然地理   2篇
  2017年   1篇
  2013年   10篇
  2010年   1篇
  2009年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1978年   1篇
排序方式: 共有24条查询结果,搜索用时 906 毫秒
21.
Abstract

Since eroded sediments are produced from different sources distributed throughout a basin, sediment delivery processes at basin scale have to be modelled by a spatially distributed approach. In this paper a new theoretically based relationship is proposed for evaluating the sediment delivery ratio, SDRi, of each morphological unit, i, into which a basin is divided. Then, using the sediment balance equation written for the basin outlet, a relationship between the basin sediment delivery ratio, SDRW and the SDRi is deduced. This relationship is shown to be independent of the soil erosion model used. Finally, a morphological criterion for estimating a coefficient, β, is proposed.  相似文献   
22.
23.
Abstract— The iron-magnesium exchange between M1 and M2 sites in orthopyroxene is a reversible reaction that records the latest event in the thermal evolution of the host rock. A kinetic analysis of this process has been applied to 16 orthopyroxene single crystals from 7 different diogenites to constrain the cooling history of their parent body. The Fe2+-Mg ordering degrees have been determined by single-crystal x-ray diffraction. The Fe2+-Mg ordering closure temperatures were very homogeneous within each sample and ranged, for all diogenites studied, between 311 ± 29 °C and 408 ± 10 °C. Cooling rates at these closure temperatures were calculated using a numerical method developed by Ganguly (1982). These ranged between ~5 °C/104 year in Johnstown and ~0.8 °C/year in Roda. A comparison with other achondrites studied with the same method showed that increasing closure temperatures correspond to increasing cooling rates and that meteorites from a same parent body exhibit similar closure temperature and cooling rate values. The cooling rates obtained for these diogenites, at their low closure temperatures, should probably be ascribed to a complex thermal history of their parent body, thus confirming Miyamoto and Takeda's theory (1994a) of excavation of deep crustal material due to impact events. The differences on cooling rate values for different diogenites could be due to different burial depths in the fragment ejected from the parent body.  相似文献   
24.
The lower part of the Early Cambrian Sekwi Formation in the Selwyn Basin of the Northwest Territories, Canada, is composed of two regional, unconformity‐bounded sequences, S0 and S1, which record the first widespread carbonate deposition during the initial Palaeozoic transgression onto the western margin of Laurentia. These Early Cambrian sequences are unique to the western North American Cordillera, representing the only record of primarily deep‐water deposition on a tectonically active, mixed carbonate–siliciclastic ramp during this period. More specifically, the geometry of the Sekwi ramp changed during deposition of S0 and S1, from a shallowly dipping homoclinal ramp during the S0 transgressive systems tract to a steeply dipping tectonically modified ramp during the early highstand systems tract of S0. The steeply dipping ramp profile of S0 was preserved into the early transgressive systems tract of S1. The Sekwi ramp returned to a gently sloping ramp during the late highstand systems tract of S1 and remained so throughout the remainder of Sekwi deposition. The evolving shape of the Sekwi ramp is attributed to syndepositional ‘down to the basin’ faulting during deposition of both S0 and S1 and is recorded by: (i) the westward thickening, irregular geometries of S0 and S1; (ii) geographical restriction of deep‐water facies (including sediment gravity flow deposits); (iii) the presence of large allochthonous blocks; and (iv) the clast composition of sediment gravity flow deposits. Sediment gravity flow deposits play an unusually important role in the sequence stratigraphic interpretation of the lower Sekwi Formation, as they delineate depositional packages, including the maximum flooding zone, the transitions between portions of systems tracts, and the inferred locations of syntectonic extensional faults. Syntectonic faults increased accommodation basinward of an extensive ooid‐shoal complex that developed along the Sekwi ramp crest, greatly influencing sequence geometry and initiating the downslope motion of sediment gravity flows. The syndepositional faulting probably was a continuation of extension that began during the latest Neoproterozoic rifting of western Laurentia. The composition of sediment gravity flow deposits track changing accommodation space on the lower Sekwi ramp and can be used to differentiate systems tracts that probably were related more to tectonism than eustasy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号