首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104866篇
  免费   1684篇
  国内免费   893篇
测绘学   2470篇
大气科学   7288篇
地球物理   20918篇
地质学   37681篇
海洋学   9264篇
天文学   23308篇
综合类   299篇
自然地理   6215篇
  2022年   617篇
  2021年   1074篇
  2020年   1193篇
  2019年   1289篇
  2018年   2735篇
  2017年   2590篇
  2016年   3165篇
  2015年   1801篇
  2014年   3089篇
  2013年   5406篇
  2012年   3276篇
  2011年   4451篇
  2010年   3846篇
  2009年   5006篇
  2008年   4559篇
  2007年   4453篇
  2006年   4146篇
  2005年   3203篇
  2004年   3131篇
  2003年   3037篇
  2002年   2777篇
  2001年   2501篇
  2000年   2390篇
  1999年   1957篇
  1998年   2048篇
  1997年   1986篇
  1996年   1623篇
  1995年   1626篇
  1994年   1421篇
  1993年   1275篇
  1992年   1183篇
  1991年   1153篇
  1990年   1257篇
  1989年   1072篇
  1988年   996篇
  1987年   1173篇
  1986年   1045篇
  1985年   1324篇
  1984年   1425篇
  1983年   1358篇
  1982年   1295篇
  1981年   1134篇
  1980年   1076篇
  1979年   1009篇
  1978年   974篇
  1977年   923篇
  1976年   864篇
  1975年   837篇
  1974年   838篇
  1973年   825篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
Anomalous crustal and upper mantle structure of northern Juan de Fuca plate is revealed from wide-angle seismic and gravity modelling. A 2-D velocity model is produced for refraction line II of the 1980 Vancouver Island Seismic Project (VISP80). The refraction data were recorded on three ocean bottom seismometers (OBSs) deployed at the ends and middle of a 110 km line oriented parallel to the North American continental margin. The velocity model is constructed via ray tracing and conforms to first-arrival amplitude observations and travel time picks of direct, converted and reflected phases. Between sub-sediment depths of 3 to 11 km, depths normally associated with the lower crust and upper oceanic mantle, the final model shows that compressional-wave velocities decrease significantly from southeast to northwest along the profile. At sub-sediment depths of 11 km at the northwestern end of the profile, P-wave velocities are as low as 7.2 km/s. A complementary 2-D gravity model using the geometry of the velocity model and velocity–density relationships characteristic of oceanic crust is produced. The high densities required to match the gravity field indicate the presence of peridotites containing 25–30% serpentine by volume, rather than excess gabbroic crust, within the deep low velocity zone. Anomalous travel time delays and unusual reflection characteristics observed from proximal seismic refraction and reflection experiments suggest a broader zone of partially serpentinized peridotites coincident with the trace of a pseudofault. We propose that partial serpentinization of the upper mantle is a consequence of slow spreading at the tip of a propagating rift.  相似文献   
943.
A total of 268 thermal spring samples were analyzed for total soluble As using reduced molybdenum-blue; 27 of these samples were also analyzed for total Sb using flame atomic absorption spectrometry. At Yellowstone the ClAs atomic ratio is nearly constant among neutral-alkaline springs with Cl > 100 mg L?1, and within restricted geographic areas, indicating no differential effects of adiabatic vs. conductive cooling on arsenic. The ClAs ratio increases with silica and decreases with decreasing ClΣCO3; the latter relationship is best exemplified for springs along the extensively sampled SE-NW trend within the Lone Star-Upper-Midway Basin region. The relationship between ClAs and ClΣCO3 at Yellowstone suggests a possible rock leaching rather than magmatic origin for much of the Park's total As flux. Condensed vapor springs are low in both As and Cl. Very high ClAs ratios ( > 1000) are associated exclusively with highly diluted (Cl < 100 mg L?1) mixed springs in the Norris and Shoshone Basins and in the Upper White Creek and Firehole Lake areas of Lower Basin. The high ratios are associated with acidity and/or oxygen and iron; they indicate precipitation of As following massive dilution of the Asbearing high-Cl parent water.Yellowstone Sb ranged from 0.009 at Mammoth to 0.166 mg L?1 at Joseph's Coat Spring. Within basins, the ClSb ratio increases as the ClΣCO3 ratio decreases, in marked contrast to As. Mixed springs also have elevated ClSb ratios. White (1967) and Weissberg (1969) previously reported stibnite (Sb2S3), but not orpiment (As2S3), precipitating in the near surface zone of alkaline geothermal systems.  相似文献   
944.
The Eskimo Lakes and Liverpool Bay constitute a series of estuarine waters to the Beaufort Sea in arctic Canada. Salinity ranges in summer from 20‰ at the mouth to less than 1‰ at the head of the system. Arctic features include an ice cover lasting for about 8 months annually and water temperatures which fluctuate from ?1°C in winter to as high as 12°C in late summer. Subsurface light is severely attenuated. Reactive phosphate varies from a spring high of 0.3 μg-at P per 1 to undetectable levels during summer. Nitrate is more abundant, and silicate is consistently plentiful. Chlorophyll a reaches a maximum only occasionally higher than 3 mg per m3 in June and July, rising from undetectable levels in winter. Photosynthetic rates are low by all standards, and have not been measured at greater than 6.4 mg C per m2 per hour in summer. Low levels of subsurface light and reactive phosphate and nitrate characterize this exceptionally oligotrophic arctic estuary.  相似文献   
945.
The brightness and color variations of the symbiotic star CH Cygni are studied, and its stationary, spherically symmetric, extended dust envelope is modeled based on long-term UBVRJHKLM photometry, the mid-IR spectral energy distribution (7–23 µm), and far-IR fluxes measured by IRAS and ISO. The existence of a hot dust envelope, detected earlier in the near IR, is confirmed; the optical depth of the envelope has probably increased with time. Model fits to the IRAS and ISO data indicate that the V-band optical depth increased from 0.22 to 0.41 due to dust density enhancement during the 14 years between the observations by the two spacecraft. The mass-loss rate, gas-expansion velocity at the outer boundary of the envelope, and upper limit of the mass of the central source of emission are estimated assuming that the stellar wind of the system is driven by the pressure of the red giant's radiation on the dust, with subsequent momentum transfer to the gaseous medium.  相似文献   
946.
The 720-m-thick succession of the Middle Triassic Latemàr Massif (Dolomites, Italy) was used to reconstruct the lagoonal facies architecture of a small atoll-like carbonate platform. Facies analysis of the lagoonal sediments yields a bathymetric interpretation of the lateral facies variations, which reflect a syndepositional palaeorelief. Based on tracing of lagoonal flooding surfaces, the metre-scale shallowing-upward cycles are interpreted to be of allocyclic origin. Short-term sea-level changes led to subaerial exposure of wide parts of the marginal zone, resulting in the development of a tepee belt of varying width. Occasional emergence of the entire lagoon produced lagoon-wide decimetre-thick red exposure horizons. The supratidal tepee belt in the backreef area represented the zone of maximum elevation, which circumscribed the sub- to peritidal lagoonal interior during most of the platform's development. This tepee rim, the subtidal reef and a sub- to peritidal transition zone in between stabilized the platform margin. The asymmetric width of facies belts within individual metre-scale cycles was caused by redistribution processes that reflect palaeowinds and storm paths from the present-day south and west. The overall succession shows stratigraphic changes on a scale of tens of metres from a basal subtidal unit, overlain by three tepee-rich intervals, separated by tepee-poor units composed of subtidal to peritidal facies. This stacking pattern reflects two third-order sequences during the late Anisian to early middle Ladinian.  相似文献   
947.
948.
Previous research by our group (e.g., [Chem. Geol. 132 (1996) 25; Geochim. Cosmochim. Acta 64 (2000) 1363]) has shown that an aerobic Pseudomonas mendocina bacterium enhances Fe(hydr)oxide dissolution in order to obtain Fe under Fe-limited conditions. The P. mendocina is incapable of utilizing Fe as a terminal electron acceptor and requires several orders of magnitude lower Fe concentrations than do dissimilatory Fe reducing bacteria. The research reported here compared the effects of the P. mendocina on dissolution of well and poorly ordered Clay Minerals Society Source Clay kaolinites KGa-1b and KGa-2, respectively, under Fe-limited conditions. KGa-1b and KGa-2 contain 0.04 and 0.94 bulk wt.% Fe, respectively, and their surface Fe/Si atomic RATIOS=0.008 and 0.012. Following strong cleaning of the kaolinites in 5.8 M HCl at 85 °C, the surface Fe/Si atomic ratios decreased to 0.004 and 0.008, respectively. Both kaolinites also developed a Si-enriched surface precipitate upon strong cleaning.

Because the P. mendocina take up Fe, we could not measure Fe release from the kaolinite directly, but rather had to monitor it indirectly by comparing microbial populations sizes under Fe-limited growth conditions. We found that microbial growth on uncleaned, weakly cleaned, and strongly cleaned kaolinites increased with the amount of Fe readily available to organic ligands as estimated by dissolution in 0.001 M oxalate (pH 3). This suggests that it is the amount of readily accessible Fe that controls Fe acquisition and hence microbial growth. The trend is based on only a relatively small range of kaolinite Fe contents, and the research thus needs to be expanded to include kaolinites with a broader range of bulk and surface Fe concentrations.

Significant enhancement of Al release was observed in the presence of the bacteria, along with generally some enhancement of Si release. This enhancement of kaolinite dissolution could be related to an observed pH increase from 7–8 to 9 in the presence of the bacteria and/or to production of Al chelating agents. The P. mendocina produce a variety of organic exudates, including siderophores [Chem. Geol. 132 (1996) 25; Geomicrobiology (2001b)], and further studies into the effects of the siderophores on Al complexation and on kaolinite dissolution are ongoing.  相似文献   

949.
Rhizophora mangle L. (red mangrove) is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ) red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m). These height differences are coupled with very different stable carbon and nitrogen isotopic values[1] (mean tall δ 13C = -28.3‰, δ 15N = 0‰; mean tall δ 13C = -25.3‰, δ 15N = -10‰). To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ 13C and δ 15N) composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds) in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ 13C and δ 15N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ 13C and δ 15N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ 15N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in mangrove paleoecosystems.  相似文献   
950.
A steep escarpment edge, deep gorges and distinct knickzones in river profiles characterize the landscape on the Western Escarpment of the Andes between ~5°S and ~18°S (northern Peru to northern Chile). Strong north–south and east–west precipitation gradients are exploited in order to determine how climate affects denudation rates in three river basins spanning an otherwise relatively uniform geologic and geomorphologic setting. Late Miocene tectonics uplifted the Meseta/Altiplano plateau (~3000 m a.s.l.), which is underlain by a series of Tertiary volcanic‐volcanoclastic rocks. Streams on this plateau remain graded to the Late Miocene base level. Below the rim of the Meseta, streams have responded to this ramp uplift by incising deeply into fractured Mesozoic rocks via a series of steep, headward retreating knickzones that grade to the present‐day base level defined by the Pacific Ocean. It is found that the Tertiary units on the plateau function as cap‐rocks, which aid in the parallel retreat of the sharp escarpment edge and upper knickzone tips. 10Be‐derived catchment denudation rates of the Rio Piura (5°S), Rio Pisco (13°S) and Rio Lluta (18°S) average ~10 mm ky?1 on the Meseta/Altiplano, irrespective of precipitation rates; whereas, downstream of the escarpment edge, denudation rates range from 10 mm ky?1 to 250 mm ky?1 and correlate positively with precipitation rates, but show no strong correlation with hillslope angles or channel steepness. These relationships are explained by the presence of a cap‐rock and climate‐driven fluvial incision that steepens hillslopes to near‐threshold conditions. Since escarpment retreat and the precipitation pattern were established at least in the Miocene, it is speculated that the present‐day distribution of morphology and denudation rates has probably remained largely unchanged during the past several millions of years as the knickzones have propagated headward into the plateau. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号