首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   4篇
  国内免费   2篇
大气科学   13篇
地球物理   43篇
地质学   73篇
海洋学   11篇
天文学   111篇
自然地理   73篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   13篇
  2013年   14篇
  2012年   10篇
  2011年   10篇
  2010年   6篇
  2009年   11篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   11篇
  2003年   18篇
  2002年   4篇
  2001年   15篇
  2000年   8篇
  1999年   6篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   3篇
  1994年   8篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1983年   8篇
  1982年   9篇
  1981年   9篇
  1980年   4篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   7篇
  1974年   7篇
  1973年   5篇
  1972年   5篇
  1971年   5篇
  1969年   4篇
  1967年   2篇
  1962年   2篇
  1938年   4篇
  1933年   3篇
排序方式: 共有324条查询结果,搜索用时 125 毫秒
291.
292.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   
293.
The theoretical work on rotational discontinuities in an anisotropic plasma is extended and the results are presented in a form more convenient for comparison with observations in the solar wind. Diagrams are presented to help observers identify rotational discontinuities using the values of ρ, B and β on either side. Under average solar wind conditions at 1 AU it is found that B and ρ change by at most a factor of ~1·7, and in a β ? 0·4 plasma ρ changes by at most a factor of 1·1 and B is virtually constant. The changes in physical parameters across a typical rotational discontinuity are illustrated, and the special cases of downstream isotropy and of p⊥ = constant are considered in detail.  相似文献   
294.
Švestka  Zdeněk  Fárník  František  Hick  Paul  Hudson  Hugh S.  Uchida  Yutaka 《Solar physics》1997,176(2):355-371
We demonstrate several events where an eruptive flare close to the limb gave rise to a transient coronal streamer visible in X-rays in Yohkoh SXT images, and analyze one of these events, on 28–29 October 1992, in detail. A coronal helmet streamer began to appear 2 hours after the flare, high above rising post-flare loops; the streamer became progressively narrower, reaching its minimum width 7–12 hours after the flare, and widened again thereafter, until it eventually disappeared. Several other events behaved in a similar way. We suggest that the minimum width indicates the time when the streamer became fully developed. All the time the temperature in the helmet streamer structure was decreasing, which can explain the subsequent fictitious widening of the X-ray streamer. It is suggested that we may see here two systems of reconnection on widely different altitudes, one giving rise to the post-flare loops while the other creates (or re-forms) the coronal helmet streamer. A similar interpretation was suggested in 1990 by Kopp and Polettofor post-flare giant arches observed on board the SMM; indeed, there are some similarities between these post-flare helmet streamers and giant arches and, with the low spatial resolution of SMM instruments, it is possible that some helmet streamers could have been considered to be a kind of a giant arch.  相似文献   
295.
296.
297.
298.
299.
The sulfur isotopic effect (δ34S) shown by batch cultures of six species of sulfate-reducing bacteria was ?14.6%. (S.D.4.1).Fractionation appeared to be independent of electron donor, temperature (between 35 and 55°) and the extent of sulfate reduction.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号