首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   50篇
  国内免费   4篇
测绘学   22篇
大气科学   45篇
地球物理   211篇
地质学   195篇
海洋学   66篇
天文学   176篇
综合类   1篇
自然地理   176篇
  2023年   9篇
  2021年   11篇
  2020年   22篇
  2019年   20篇
  2018年   12篇
  2017年   24篇
  2016年   23篇
  2015年   14篇
  2014年   27篇
  2013年   43篇
  2012年   17篇
  2011年   32篇
  2010年   42篇
  2009年   29篇
  2008年   33篇
  2007年   38篇
  2006年   34篇
  2005年   27篇
  2004年   35篇
  2003年   28篇
  2002年   42篇
  2001年   27篇
  2000年   21篇
  1999年   19篇
  1998年   22篇
  1997年   10篇
  1996年   10篇
  1995年   11篇
  1994年   5篇
  1993年   9篇
  1992年   8篇
  1991年   18篇
  1990年   10篇
  1989年   5篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   12篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1980年   6篇
  1979年   6篇
  1978年   11篇
  1977年   11篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
排序方式: 共有892条查询结果,搜索用时 15 毫秒
41.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
42.
The type species of the Palaeozoic cystoporate bryozoan genus Fistulipora M'Coy, 1849 is redescribed. Fistulipora minor M'Coy, 1849 is the type species, and was the first species described under the genus Fistulipora. Quantitative assessment of type and figured specimens of Calamopora incrustans Phillips, 1836 and F. minor has shown them to fall within the range of morphological variation exhibited by abundant comparative material collected at several horizons and they are referable to one morphologically variable taxon. F. minor is the junior subjective synonym of C. incrustans and the form can be quoted as F. minor M'Coy, 1849 = C. incrustans Phillips, 1836 with a valid name of F. incrustans (Phillips, 1836). However, this does not alter the name of the type species, which is F. minor M'Coy, 1849. The type specimen of Berenicea megastoma M'Coy, 1844 has also been examined, and this form is also conspecific with F. minor M'Coy, 1849 = C. incrustans Phillips, 1836. Examination of the type specimen of F. major M'Coy (1849) has shown it to be referable to the tabulate coral genus Chaetetes. A lectotype and paralectotypes are designated for F. minor and the status of the type specimens of F. incrustans is clarified.  相似文献   
43.
Increasing concentrations of atmospheric carbon dioxide are causing oceanic pH to decline worldwide, a phenomenon termed ocean acidification. Mounting experimental evidence indicates that near-future levels of CO2 will affect calcareous invertebrates such as corals, molluscs and gastropods, by reducing their scope for calcification. Despite extensive research into ocean acidification in recent years, the effects on non-calcifying anthozoans, such as sea anemones, remain little explored. In Western Europe, intertidal anemones such as Actinia equina are abundant, lower trophic-level organisms that function as important ecosystem engineers. Changes to behaviours of these simple predators could have implications for intertidal assemblages. This investigation identified the effects of reduced seawater pH on feeding and contest behaviour by A. equina. Video footage was recorded for A. equina feeding at current-day seawater (pH 8.1), and the least (pH 7.9) and most (pH 7.6) severe end-of-century predictions. Footage was also taken of contests over ownership of space between anemones exposed to reduced pH and those that were not. No statistically significant differences were identified in feeding duration or various aspects of contest behaviour including initiating, winning, inflating acrorhagi, inflicting acrorhagial peels and contest duration. Multivariate analyses showed no effect of pH on a combination of these variables. This provides contrast with other studies where anemones with symbiotic algae thrive in areas of natural increased acidity. Thus, novel experiments using intraspecific contests and resource-holding potential may prove an effective approach to understand sub-lethal consequences of ocean acidification for A. equina, other sea anemones and more broadly for marine ecosystems.  相似文献   
44.
It is widely recognised that palaeobathymetry is a key control on the distribution of turbidite deposits. Thus, the utilisation of palaeobathymetric surfaces as an input for numerical turbidity current modelling offers a potentially powerful method to predict the distribution of deep marine sands in ancient (subsurface or outcrop) successions. Such an approach has been tested on an Aptian turbidite deposit from the Buchan Graben, UK Central North Sea, where modelled sand distributions could be quality controlled against available well data.  相似文献   
45.
Carriacou is one of the small islands in the Grenadine chain in the southern Lesser Antilles. It preserves two Miocene successions, that on the south coast shallowing upwards and separated by a probable fault from the extensively exposed turbidite sequence, called the Grand Bay Formation, on the east coast. These formations show a range of features beautifully exposed in coastal sections, including unconformities, turbidites and a starfish bed.  相似文献   
46.
47.
Fifty‐five new SHRIMP U–Pb zircon ages from samples of northern Australian ‘basement’ and its overlying Proterozoic successions are used to refine and, in places, significantly change previous lithostratigraphic correlations. In conjunction with sequence‐stratigraphic studies, the 1800–1580 Ma rock record between Mt Isa and the Roper River is now classified into three superbasin phases—the Leichhardt, Calvert and Isa. These three major depositional episodes are separated by ~20 million years gaps. The Isa Superbasin can be further subdivided into seven supersequences each 10–15 million years in duration. Gaps in the geological record between these supersequences are variable; they approach several million years in basin‐margin positions, but are much smaller in the depocentres. Arguments based on field setting, petrography, zircon morphology, and U–Pb systematics are used to interpret these U–Pb zircon ages and in most cases to demonstrate that the ages obtained are depositional. In some instances, zircon crystals are reworked and give maximum depositional ages. These give useful provenance information as they fingerprint the source(s) of basin fill. Six new ‘Barramundi’ basement ages (around 1850 Ma) were obtained from crystalline units in the Murphy Inlier (Nicholson Granite and Cliffdale Volcanics), the Urapunga Tectonic Ridge (‘Mt Reid Volcanics’ and ‘Urapunga Granite’), and the central McArthur Basin (Scrutton Volcanics). New ages were also obtained from units assigned to the Calvert Superbasin (ca 1740–1690 Ma). SHRIMP results show that the Wollogorang Formation is not one continuous unit, but two different sequences, one deposited around 1730 Ma and a younger unit deposited around 1722 Ma. Further documentation is given of a regional 1725 Ma felsic event adjacent to the Murphy Inlier (Peters Creek Volcanics and Packsaddle Microgranite) and in the Carrara Range. A younger ca 1710 Ma felsic event is indicated in the southwestern McArthur Basin (Tanumbirini Rhyolite and overlying Nyanantu Formation). Four of the seven supersequences in the Isa Superbasin (ca 1670–1580 Ma) are reasonably well‐constrained by the new SHRIMP results: the Gun Supersequence (ca 1670–1655 Ma) by Paradise Creek Formation, Moondarra Siltstone, Breakaway Shale and Urquhart Shale ages grouped between 1668 and 1652 Ma; the Loretta Supersequence (ca 1655–1645 Ma) by results from the Lady Loretta Formation, Walford Dolomite, the upper part of the Mallapunyah Formation and the Tatoola Sandstone between ca 1653 and 1647 Ma; the River Supersequence (ca 1645–1630 Ma) by ages from the Teena Dolomite, Mt Les and Riversleigh Siltstones, and Barney Creek, Lynott, St Vidgeon and Nagi Formations clustering around 1640 Ma; and the Term Supersequence (ca 1630–1615 Ma) by ages from the Stretton Sandstone, lower Doomadgee Formation and lower part of the Lawn Hill Formation, mostly around 1630–1620 Ma. The next two younger supersequences are less well‐constrained geochronologically, but comprise the Lawn Supersequence (ca 1615–1600 Ma) with ages from the lower Balbirini Dolomite, and lower Doomadgee, Amos and middle Lawn Hill Formations, clustered around 1615–1610 Ma; and the Wide Supersequence (ca 1600–1585 Ma) with only two ages around 1590 Ma, one from the upper Balbirini Dolomite and the other from the upper Lawn Hill Formation. The Doom Supersequence (<1585 Ma) at the top of the Isa Superbasin is essentially unconstrained. The integration of high‐precision SHRIMP dating from continuously analysed stratigraphic sections, within a sequence stratigraphic context, provides an enhanced chronostratigraphic framework leading to more reliable interpretations of basin architecture and evolution.  相似文献   
48.
The snowfall in the Baltimore/Washington metropolitan area during the winter of 2009/2010 was unprecedented and caused serious snow‐related disruptions. In February 2010, snowfall totals approached 2 m, and because maximum temperatures were consistently below normal, snow remained on the ground the entire month. One of the biggest contributing factors to the unusually severe winter weather in 2009/2010, throughout much of the middle latitudes, was the Arctic Oscillation. Unusually high pressure at high latitudes and low pressure at middle latitudes forced a persistent exchange of mass from north to south. In this investigation, a concerted effort was made to link remotely sensed falling snow observations to remotely sensed snow cover and snowpack observations in the Baltimore/Washington area. Specifically, the Advanced Microwave Scanning Radiometer onboard the Aqua satellite was used to assess snow water equivalent, and the Advanced Microwave Sounding Unit‐B and Microwave Humidity Sounder were employed to detect falling snow. Advanced Microwave Scanning Radiometer passive microwave signatures in this study are related to both snow on the ground and surface ice layers. In regard to falling snow, signatures indicative of snowfall can be observed in high frequency brightness temperatures of Advanced Microwave Sounding Unit‐B and Microwave Humidity Sounder. Indeed, retrievals show an increase in snow water equivalent after the detection of falling snow. Yet, this work also shows that falling snow intensity and/or the presence of liquid water clouds impacts the ability to reliably detect snow water equivalent. Moreover, changes in the condition of the snowpack, especially in the surface features, negatively affect retrieval performance. Copyright © 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
49.
In this paper we present a theoretical investigation of the structures and relative stability of the olivine and spinel phases of Mg2SiO4. We use both a purely ionic model, based on the Modified Electron Gas (MEG) model of intermolecular forces, and a bond polarization model, developed for low pressure silica phases, to investigate the role of covalency in these compounds. The standard MEG ionic model gives adequate structural results for the two phases but incorrectly predicts the spinel phase to be more stable at zero pressure. This is mainly because the ionic modeling of Mg2SiO4 only accounts for 95 percent of the lattice energy. The remainder can be attributed to covalency and many-body effects. An extension of the MEG ionic model using “many-body” pair potentials corrects the phase stability error, but predicts structures which are in poorer agreement with experiment than the standard ionic approach. In addition, calculations using these many-body pair potentials can only account for 10 percent of the missing lattice energy. This model predicts an olivine-spinel phase transition of 8 GPa, below the experimental value of 20 GPa. Therefore, in order to understand more fully the stability of these structures we must consider polarization. A two-shell bond polarization model enhances the stability of both structures, with the olivine structure being stabilized more. This model predicts a phase transition at about 80 GPa, well above the observed value. Also, the olivine and spinel structures calculated with this approach are in poorer agreement with experiment than the ionic model. Therefore, based on our investigations, to properly model covalency in Mg2SiO4, a treatment more sophisticated than the two-shell model is needed.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号