首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
  国内免费   5篇
地球物理   14篇
地质学   17篇
天文学   1篇
自然地理   10篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1978年   1篇
  1973年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
11.
2022年1月8日01时45分,青海省海北州门源县发生了Ms 6. 9级强烈地震,震中位于青藏高原东北缘海原断裂带中西段的冷龙岭断裂附近。震后的野外现场考察表明,这次地震在海拔3500~4100 m的高原北部祁连山区形成了一系列由张裂隙、张剪裂隙、剪切裂隙、挤压鼓包和裂陷等多类型破裂雁行状组合而成的同震地表变形带,表现为左旋走滑运动性质,总长约27 km。破裂带呈NWW—SEE走向,可分为南北两支,北支沿冷龙岭断裂西段分布,南支沿托莱山断裂东端分布,与北支间隔3 km呈左阶雁行排列。根据破裂带的走向变化和阶区特征,可将破裂带分为三段:西段、中段和东段,与地表同震位移分布特征较为吻合。西段为破裂带的南支,呈N93°E走向,长约4. 5 km,最大左行水平位错约85 cm;中段为北支破裂带西侧部分,主要呈N102°E走向,长约7. 5 km,最大左行水平位错约3. 7 m;东段为北支破裂带东侧部分,走向呈N110~120°E走向,长约15 km,最大左行水平位错约3. 0 m。门源地震震级与地表破裂带分布规模和变形强度的对比,表明本次地震的震源深度较浅,可能远小于10 km深。这次门源地震的发震断裂为海原断裂带呈挤压弯曲部分的冷龙岭断裂,具有花状构造特征。由于本次地震余震向SE方向扩展,表明具有应力向东迁移趋势,因此,冷龙岭断裂东侧处在海原断裂带上1920年海原大地震与2022年门源地震之间地震空区的金强河、毛毛山和老虎山断裂未来强震危险性升高,需要重点关注。  相似文献   
12.
Mineral-aqueous solution equilibria for the assemblages talc-quartz, tremolite-talc-quartz, diopside-tremolite-quartz, wollastonite-diopside-quartz and wollastonite-quartz have been studied at 2 kb total pressure, 500° to 700°C and chloride concentrations from 0.03 to 6.0 molal. Most work was at 1 m chloride. Both buffered and unbuffered data were obtained and a recalibration of the Ag-AgCl buffer is presented. Log equilibrium quotients at 500°, 600° and 700°C are respectively: Ta-Qz (mMgCl2mHCl2) 2.57, 1.71, 0.73; Tr-Ta-Qz and Di-Tr-Qz (mCaCl2mMgCl2mHCl2) 4.98, 3.99, 2.21 and 7.29, 5.30, 3.56; WoDi-Qz (mCaCl2mMgCl2) 3.30, 3.00, 2.79: Wo-Qz (mCaCl2mHCl2) 5.15, 3.95, 2.68. Mineral stability fields plotted in terms of these concentration data more tangibly represent the compositional character of real systems and the mass transfer capabilities of their fluids than do the analogous theoretical activity diagrams.Overall dissociation constants of MgCl2 and CaCl2 were calculated from the experimental data using the calculated ionic activity constants for the reactions and the established dissociation constants of HCl. The negative log values are respectively: 3.88. 6.63, 9.20 for CaCl2 and 4.60, 7.54, 10.37 for MgCl2 at 500°, 600° and 700°C, 2 kb. The Ca values are about an order of magnitude more positive than the conductance-derived values by Frantz and Marshall (1982).The phase relations developed in this study have application to the genesis of talc, tremolite, and diopside-bearing assemblages in some regional metamorphic rocks, but more specifically to the calcsilicate skarn assemblages of many metasomatic aureoles. The equilibrium fluids are characterized by high concentrations of Ca relative to Mg and increasing CaMg ratios with decreasing temperatures. The stability fields of talc, tremolite, and quartz expand relative to those of diopside and wollastonite with decreasing temperature, hence their more common appearance as retrograde products in skarn systems.  相似文献   
13.
鲜水河断裂带位于青藏高原东缘,是中国大陆内部地震活动性最强的大型活动断裂带之一。大量研究证据表明,鲜水河断裂带色拉哈—康定段未来几十年内发生破坏性强震的风险较高。目前正在规划建设的国家重大交通基础建设工程——川藏铁路,将在康定折多山地区直接穿越鲜水河活动断裂带。本研究通过高分辨率卫星影像的地质地貌解译和详细的野外构造地质填图,新发现一条发育于色拉哈断裂和折多塘断裂之间折多山花岗岩体内的长约24km的全新世活动断层,该断裂空间上可分成北、中、南三段,呈(正滑)左旋右阶雁行状排列,并将其命名为“木格措南断裂”。该活动断裂的发现对完善鲜水河断裂带色拉哈—康定段的精细几何图像和构造组合特征,准确评价鲜水河断裂带的地震危险性具有重要意义,并为川藏铁路施工建设和安全运营提供了重要科学数据支撑。  相似文献   
14.
15.
Petrological and geochemical study of volatile bearing phases (fluid inclusions, amphibole, and nominally anhydrous minerals) in a spinel lherzolite xenolith suite from Quaternary lavas at Injibara (Lake Tana region, Ethiopian plateau) shows compelling evidence for metasomatism in the lithospheric mantle in a region of mantle upwelling and continental flood basalts. The xenolith suite consists of deformed (i.e., protogranular to porphyroclastic texture) Cl-rich pargasite lherzolites, metasomatized (LILE and Pb enrichment in clinopyroxene and amphibole) at T ? 1000 °C. Lherzolites contain chlorine-rich H2O-CO2 fluid inclusions, but no melt inclusions. Fluid inclusions are preserved only in orthopyroxene, while in olivine, they underwent extensive interaction with the host mineral. The metasomatic fluid composition is estimated: XCO2 = 0.64, XH2O = 0.33, XNa = 0.006, XMg = 0.006, XCl = 0.018, (salinity = 14-10 NaCl eq. wt.%, aH2O = 0.2, Cl = 4-5 mol.%). Fluid isochores correspond to trapping pressures of 1.4-1.5 GPa or 50-54 km depth (at T = 950 °C). Synchrotron sourced micro-infrared mapping (ELECTRA, Trieste) shows gradients for H2O-distribution in nominally anhydrous minerals, with considerable enrichment at grain boundaries, along intragranular microfractures, and around fluid inclusions. Total water amounts in lherzolites are variable from about 150 up to 400 ppm. Calculated trace-element pattern of metasomatic fluid phases, combined with distribution and amount of H2O in nominally anhydrous minerals, delineate a metasomatic Cl- and LILE-rich fluid phase heterogeneously distributed in the continental lithosphere. Present data suggest that Cl-rich aqueous fluids were important metasomatic agents beneath the Ethiopian plateau, locally forming a source of high water content in the peridotite, which may be easily melted. High Cl, LILE, and Pb in metasomatic fluid phases suggest the contribution of recycled altered oceanic lithosphere component in their source.  相似文献   
16.
Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz‐rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high‐pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s?1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.  相似文献   
17.
18.
19.
Both morphologic and tectonic studies indicate that Mercury and the Moon have quite different internal histories, despite their apparently similar morphologies. The evaluation of the volcanic surfaces indicates a decreasing volcanism on Mercury at the largest impacting time, despite short and local reactivations. On the Moon, the basaltic volcanism was increasing at the same time and continued for 1 billion years. That indicates a strongly different thermal evolution for these two planetary bodies.A widespread graben pattern is present on the Moon, with a statistical dominance of radial or tangential orientation with respect to the Imbrium basin, thus suggesting a relation between this major basin and the expansion of the Moon.Azimuthal studies show that the compressive structures, observed on the stereographic covered surface of Mercury are not randomly oriented, but seem radial towards the Caloris basin, thus indicating a possible influence of this largest basin on Mercurian contraction.The qualitative and quantitative formulations of these tectonic perturbations induced by large basins will be developed in a companion paper [1].  相似文献   
20.
The potential for forest harvest to increase snowmelt rates in maritime snow climates is well recognized. However, questions still exist about the magnitude of peak flow increases in basins larger than 10 km2 and the geomorphic and biological consequences of these changes. In this study, we used observations from two nearly adjacent small basins (13 and 30 km2) in the Coeur d'Alene River basin, one with recent, relatively extensive, timber harvest, and the other with little disturbance in the last 50 years to explore changes in peak flows due to timber harvest and their potential effects on fish. Peak discharge was computed for a specific rain‐on‐snow event using a series of physical models that linked predicted values of snowmelt input to a runoff‐routing model. Predictions indicate that timber harvest caused a 25% increase in the peak flow of the modelled event and increased the frequency of events of this magnitude from a 9‐year recurrence interval to a 3·6‐year event. These changes in hydrologic regime, with larger discharges at shorter recurrence intervals, are predicted to increase the depth and frequency of streambed scour, causing up to 15% added mortality of bull trout (Salvelinus confluentus) embryos. Mortality from increased scour, although not catastrophic, may have contributed to the extirpation of this species from the Coeur d'Alene basin, given the widespread timber harvest that occurred in this region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号