The growth of industrial swine production over the last few years has led to a growth in concern over effluents generated by the activity. Several elements, mainly toxic metals, can be present in swine wastewater and can have a serious environmental impact. It is important, therefore, to know the metal concentration before the discharge of wastewater. In this work the temporal metal distribution in swine manure and its potential reduction using coarse (2 mm) and fine (<0.45 μm) liquid‐solid separation techniques were investigated. In order to do this, different swine manure sample preparation methods for Al, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sr and Zn determination by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) were tested. The acid mixtures used to digest the manure sample significantly affected the metal recovery. Good analyte recoveries were observed with nitric acid/hydrogen peroxide mixtures or nitric acid/perchloric acid mixtures. Sulfuric acid/hydrogen peroxide mixtures produced inconsistent results and poor recoveries, mainly for Ba and Pb. It was observed that metal concentrations in swine manure varied greatly with time, up to one order of magnitude, due to changes in swine production such as feed and animal numbers. Metals concentrations observed in the raw wastewater exceeded Brazilian limits for discharge into water bodies and recommendations for agricultural use. Results obtained from the liquid‐solid separation study showed that metals in the raw swine manure were not removed with coarse screening. However, the major fraction of metals were removed by filtration (0.45 μm), with the exception of Na, K and Sr. Thus, the use of liquid‐solid separation techniques that capture the fine solid fractions (and associated metals) from raw manure can have a favorable impact on the environment and contribute to swine production wastewater treatment. 相似文献
Hydrogeology Journal - Quantifying groundwater/surface-water interactions is essential for managing water resources and revealing contaminant fate. There has been little concern on the exchange... 相似文献
Geotechnical and Geological Engineering - In order to solve the difficulties of creep deformation of surrounding rock in super large section tunnel, taking Letuan tunnel of Binlai expressway, a... 相似文献
The predictive deconvolution algorithm (PD), which is based on second-order statistics, assumes that the primaries and the multiples are implicitly orthogonal. However, the seismic data usually do not satisfy this assumption in practice. Since the seismic data (primaries and multiples) have a non-Gaussian distribution, in this paper we present an improved predictive deconvolution algorithm (IPD) by maximizing the non-Gaussianity of the recovered primaries. Applications of the IPD method on synthetic and real seismic datasets show that the proposed method obtains promising results. 相似文献
Natural Hazards - This study involved the systematic collation of historical data from local records, government records, etc., as well as disaster data compiled by contemporary researchers.... 相似文献
Particle size analysis for samples from three last glacial cycle loess-palaeosol profiles along a northwestsoutheast transection
on the Chinese Loess Plateau has been carried out. The paleoclimatic significance of grain size indices has been obtained
by analyzing the fraction content variations and their comparisons with global ice volume and solar radiation variations.
The results show that (i) paleoclimatic significance of the grain size indices of loess-palaeosol deposit is different with
grain size fraction content and sampling points in Chinese Loess Plateau; (ii) the sub-coarse grain fraction is a good proxy
index of East Asia winter monsoon strength and therefore can be used to detect the global climate changes; (iii) the content
of sub-fine and fine grain fractions is influenced by both the input of sub-coarse grain fraction and pedogenesis; (iv) the
sub-coarse fraction exhibits a negative relationship with the sub-fine and fine fractlon.
Project supported by the 9.5 major project of Chinese Academy of Sciences and the open grant of the State Key Laboratory of
Loess and Quaternary Geology, Chinese Academy of Sciences. 相似文献
Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.