首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   13篇
  国内免费   4篇
测绘学   17篇
大气科学   40篇
地球物理   65篇
地质学   133篇
海洋学   38篇
天文学   54篇
综合类   1篇
自然地理   50篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   19篇
  2015年   9篇
  2014年   17篇
  2013年   24篇
  2012年   16篇
  2011年   21篇
  2010年   18篇
  2009年   22篇
  2008年   18篇
  2007年   10篇
  2006年   17篇
  2005年   5篇
  2004年   20篇
  2003年   20篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   10篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有398条查询结果,搜索用时 625 毫秒
281.
Aminostratigraphic data were obtained for Mulinia lateralis samples from closely spaced drillholes on the Cape Lookout, North Carolina barrier islands. Two major aminozones are recognized in the subsurface section based upon D-alloisoleucine/L-isoleucine (A/I) values. These major aminozones can each be subdivided into two additional aminozones based upon direct comparisons with Mulinia A/I data from other North Carolina localities. Correlation of the Cape Lookout Mulinia aminostratigraphy with U-series calibrated A/I data in N.C. indicates that the sampled units represent deposition during the middle to late Pleistocene. The four Cape Lookout aminozones may be assigned to late and early stage 5 (or possibly stages 5 and 7), a portion of the interval during stages 17–19, and at least one interglacial in stages 25–31 of the oxygen isotope record based on correlation to calibrated sites and kinetic model extrapolation.

The aminostratigraphic data obtained from the Cape Lookout barrier islands and nearby areas indicate that there are significant differences in the extent of preservation of the Pleistocene sedimentary record to the southwest of Cape Lookout compared with that to the north-northeast. All four of the recognized Cape Lookout aminozones are present in the subsurface section to the north-northeast of Cape Lookout. In contrast, the two late Pleistocene aminozones are almost completely absent in the subsurface of the barrier islands, and in Onslow Bay, to the southwest of Cape Lookout. These aminostratigraphic interpretations are consistent with the incomplete stratigraphic record recognized by previous investigators for the Cape Lookout-Onslow Bay area. The calibrated kinetic model age estimates for the Cape Lookout aminostratigraphic data now permit quantification of these stratigraphic gaps. The detailed aminostratigraphic results from Cape Lookout also have significant consequences for regional aminostratigraphic correlations on the Atlantic Coastal Plain, and provide valuable information with which to test contrasting models proposed for regional correlation within the context of the preserved stratigraphic record.  相似文献   

282.
Papers presented at a two-day jointly sponsored IAHS/AGU symposium on groundwater contamination are briefly summarized. This international symposium was held 11–12 May, 1989, in Baltimore, Maryland. Presentations encompassed recent research developments in three general areas: abiotic and biotic processes governing contaminant transport; aquifer rehabilitation; and the influence of agricultural practices and nonpoint sources on aquifer quality. Contributions offered an interesting mixture of theoretical, mathematical, laboratory, and field studies. In the first session, transport processes explored ranged from dispersion and fingering to nonequilibrium sorption, metals complexation, and bacteria migration. The use of optimization modeling in the design of remediation strategies was the focus of another session. Here theoretical studies were presented alongside case histories of aquifer rehabilitation. In a final session, a number of models for agricultural management were described. These presentations were complemented by case studies of actual aquifer degradation resulting from land-use and management practices.  相似文献   
283.
In situ ecosystem gas exchange measurements were taken monthly for a 15-month period during low tide forJuncus roemerianus Scheele and short, medium, and tall height forms ofSpartina alterniflora Loisel. in three salt marshes near Southport, North Carolina. Multiple regression analysis was used to obtain empirical relationships betwen gas exchange values and the physical and biotic variables measured. Preliminary models for net ecosystem photosynthesis, ecosystem respiration, and respiration of aboveground standing crop were developed. Validation of models was carried out in the following manner: (1) net primary productivity of aboveground standing crop was calculated from model data and compared with harvest estimates of net primary productivity for the same year; and (2) carbon exchange and energy efficiency values were compared with literature values. In general, theSpartina models, because of their larger data base, were more useful than theJuncus models. Annual primary productivity of aboveground standing crop calculated from gas exchange values was 1.8 to 3.6 times greater forSpartian than values calculated from harvest data by Smalley's method.Juncus values were approximately equal. Since values calculated from carbon data and harvest data are not entirely equivalent, required adjustments to the carbon values are discussed. Both species have two growth periods—one in ths pring and one in the fall—with the spring growth in excess of that in the fall. Net ecosystem productivity was highest in the spring and lowest in the summer. Ecosystem respiration amounted to 71% of gross annual photosynthesis. The aboveground standing crop contributed approximately 35% to this ecosystem respiration and the soil, the remaining 36%. Efficiency for gross photosynthesis per unit of solar radiation ranged from 0.22 to 1.11%. Efficiencies for net primary production of aboveground standing crop ranged from 0 to 0.82% and those of net ecosystem production from 0 to 0.56%.  相似文献   
284.
The binding of dissolved trivalent chromium by dissolved and colloidal substrates at the riverestuary interface was studied using a combination of product and reactant mode experiments, at concentrations of materials typical of estuarine conditions. Using spikes of 1–20 μg/l Cr3+, about one third of the Cr3+ was scavenged by that fraction of riverine colloidal material which flocculated upon mixing of river water and seawater. Reactant mode experiments, using chemiluminescence as a speciation technique, showed that virtually all of the spiked Cr3+ was bound by dissolved or colloidal substrates, but that the higher molecular weight fractions were able to kinetically outcompete the lower molecular weight fractions. There was no effect of salinity or the flocculation process on the binding of Cr by riverine substrates at natural concentrations. However, salinity did produce a strong kinetic inhibition of binding if the river water was first diluted. This salinity response is likely a result of a wide variety of Cr binding site energies on the substrates.  相似文献   
285.
The sulfur isotopic composition of the Herrin (No. 6) Coal from several localities in the Illinois Basin was measured. The sediments immediately overlying these coal beds range from marine shales and limestones to non-marine shales. Organic sulfur, disseminated pyrite, and massive pyrite were extracted from hand samples taken in vertical sections.The δ 34S values from low-sulfur coals (< 0.8% organic sulfur) underlying nonmarine shale were +3.4 to +7.3%0 for organic sulfur, +1.8 to +16.8%0 for massive pyrite, and +3.9 to +23.8%0 for disseminated pyrite. In contrast, the δ 34S values from high-sulfur coals (> 0.8% organic sulfur) underlying marine sediments were more variable: organic sulfur, ?7.7 to +0.5%0, pyrites, ?17.8 to +28.5%0. In both types of coal, organic sulfur is typically enriched in 34S relative to pyritic sulfur.In general, δ 34S values increased from the top to the base of the bed. Vertical and lateral variations in δ 34S are small for organic sulfur but are large for pyritic sulfur. The sulfur content is relatively constant throughout the bed, with organic sulfur content greater than disseminated pyrite content. The results indicate that most of the organic sulfur in high-sulfur coals is derived from post-depositional reactions with a 34S-depleted source. This source is probably related to bacterial reduction of dissolved sulfate in Carboniferous seawater during a marine transgression after peat deposition. The data suggest that sulfate reduction occurred in an open system initially, and then continued in a closed system as sea water penetrated the bed.Organic sulfur in the low-sulfur coals appears to reflect the original plant sulfur, although diagenetic changes in content and isotopic composition of this fraction cannot be ruled out. The wide variability of the δ 34S in pyrite fractions suggests a complex origin involving varying extents of microbial H2S production from sulfate reservoirs of different isotopic compositions. The precipitation of pyrite may have begun soon after deposition and continued throughout the coalification process.  相似文献   
286.
Four natural gypsum rock samples were prepared and certified for major elements and some trace elements by the Analytical Group of Domtar Inc., Research Centre in Senneville (Montréal), Québec, Canada with the cooperation of Domtar Gypsum Products Laboratory in Caledonia, Ontario, Canada. The analytical round-robin results received from 29 participating laboratories were statistically evaluated, summarized, and form the basis of this paper. These certified reference materials are primarily intended as calibration standards for the determination of major and minor elements in gypsums and gypsum related minerals and products. As certified gypsum rock samples were not available on the North-American or world markets, these may be particularly important not only to the gypsum and cement industries, but also to geochemists, geologists and analysts of minerals and ores.  相似文献   
287.
288.
289.
290.
In this paper we provide a conceptual model to examine changes in ecosystem state during the transition from terrestrial forest to shallow estuarine environments for coastal mainland marshes at the Virginia Coast Reserve (VCR), United States of America. Ecosystem states are characterized by plant community dominants and soil/sediment characteristics. The five states considered are upland or wetland forest, organic high marsh, intertidal mineral low marsh, autotrophic benthic with or without submersed aquatic vascular plants, and heterotrophic benthic (estuarine bottom). Transitions between states are described from the perspective of a fixed forest location undergoing transition from one ecosystem state to another. Rising sea level is acknowledged as the master variable that forces the process of change overall. Each state is hypothesized to have self-maintaining properties and thus is resistant to change from rising sea level; alternatively, transitions between states are facilitated by disturbance or exposure to acute stress. For change to occur, resistance must be overcome by events that are more abrupt than rising sea level and that appear as accentuated pulsings, which result in another self-maintaining and resistnnt state. Such events facilitate plant species replacement and alter sediment conditions. Mechanisms responsible for causing a state to cross a threshold are unique for each transition type and include brackish-water intrusion (osmotic stress and sulfide toxicity), tidal creek encroachment (redistribution of sediments), erosive currents and waves (resuspension of sediments, which increases light extinction), and increasing water depth (leads to greater bottom shading). Field experiments relevant to scales at which pulsings occur are not abundant in coastal marshes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号