首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
大气科学   1篇
地球物理   3篇
地质学   5篇
海洋学   1篇
天文学   4篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
The introduction and spread of high potency methamphetamine has led to dramatic increases in drug-related problems in California. Prior research suggests that drug abuse rates are related to local demographic and economic characteristics, law enforcement activities, and sentencing practices. Methamphetamine abuse in particular has been shown to be reduced by laws regulating the raw materials needed for its production. This research models the regional effects of such laws on the spatio-temporal patterns of growth of methamphetamine-related problems across California from 1980 to 2006. Amphetamine-related arrests and hospital discharges related to amphetamine abuse/dependence were assembled for California counties over the years 1980–2006. Varying-parameter Bayesian space–time models were used to relate the implementation of major laws controlling the distribution of methamphetamine precursors to observed patterns of arrests and discharges and to allow such associations to vary by location. The models used conditionally autoregressive (CAR) Bayesian spatial priors to allow spatial correlation in estimation of county-specific growth in these measures over three distinct time periods: before the 1989 law, between the 1989 and 1997 laws, and after the 1997 law. Growth of arrests and discharges were related to demographic and economic indicators to determine geographic areas more or less susceptible to the spread of methamphetamine problems. Although both problem measures increased during all three periods, each of the precursor laws was associated with short-term reductions in the growth of arrests and discharges. Growth was greatest in central California counties prior to 1989 and increased in coastal counties in later years. From 1980 to 1989 growth was highest for counties with low incomes and high proportions of white residents, while 1989–1997 growth was highest in counties with fewer whites and more Hispanics. Growth after 1997 was not significantly associated with county characteristics. This research demonstrates that the precursor laws did suppress the growth of methamphetamine related arrests and hospital discharges. It also demonstrates specific geographic patterns in the growth of methamphetamine arrests and abuse across California during this time. Early patterns of growth were related to economic and demographic characteristics, while later patterns were not. This suggests that some counties were uniquely susceptible to the early spread of the methamphetamine epidemic, although problems eventually grew dramatically in all California counties.  相似文献   
12.
Tephra lapilli from six explosive eruptions between April 1996 and February 1998 at Popocatepetl volcano (=Popo) in central Mexico have been studied to investigate the causes of magma diversification in thick-crusted volcanic arcs. The tephra particles are sparsely porphyritic (≈5 vol%) magnesian andesites (SiO2=58–65 wt%; MgO=2.6–5.9 wt%) that contain phenocrysts of NiO-rich (up to 0.67 wt% NiO) magnesian olivine (Fo89–91 cores) with inclusions of Cr-spinel (cr#=59–70), orthopyroxene (mg#=63–76), clinopyroxene (mg#=68–86), intermediate to sodic plagioclase (An33–66), and traces of amphibole. Major and trace element systematics indicate magma mixing. The liquid mg#melt ratios inferred from the ferromagnesian phenocrysts suggest the existence of a mafic (mg#melt ≈ 72–76) and an evolved component magma (mg#melt ≈ 35–40). These component magmas form a hybrid magnesian andesite with an intermediate range of mg#melt=50–72. The mafic end member (mg#melt ≈ 72–75) is saturated with olivine and spinel and crystallizes at temperatures ≈1170–1085 °C with oxygen fugacities close to the fayalite–magnetite–quartz buffer and elevated water contents of several wt% H2O. A likely location of crystallization is at lower crustal levels, possibly at the Moho. Olivine is followed by high-mg# clinopyroxene which could start to crystallize during magma ascent. At depths of ≈4 to 13 km, the mafic magma mixes with an evolved composition containing low-mg# clino- and orthopyroxene and plagioclase at a temperature of ≈950 °C. The repetitive ascent of batches of mafic magmas spaced days to weeks apart implies multiple episodes of crystallization and magma mixing. The tephra is similar to the Popo magnesian andesites, suggesting similar generic processes for the common lavas of the volcano. The advantage of the tephra is that it can be used to reconstruct the composition of the mafic magma. Building on the elemental systematics of the tephra and a comparison to the near-primary basalts from the surrounding monogenetic fields, we infer that the Popo mafic end member is a magnesian andesite with variable, but high SiO2 contents of ≈55–62 wt% and near-primary characteristics, such as high-mg#melt of 72–75, FeO*/MgO ratios <1 (if extrapolated to an mg#melt of 72–75), and high Ni contents (=200 ppm Ni). This model implies that the typical elemental signature of the Popo andesites, such as the low CaO, Al2O3, FeO*, high Na2O contents, and the depletion in high-field strength elements (e.g., P, Zr, Ti), are mantle source phenomena. Thus, determining the elemental budget of the magnesian andesite, as it is prior to the modifications by crustal differentiation, is central to quantifying the subcrustal mass fluxes beneath Popo. Received: 13 December 1999 / Accepted: 11 August 2000  相似文献   
13.
14.
In mountainous river basins of the Pacific Northwest, climate models predict that winter warming will result in increased precipitation falling as rain and decreased snowpack. A detailed understanding of the spatial and temporal dynamics of water sources across river networks will help illuminate climate change impacts on river flow regimes. Because the stable isotopic composition of precipitation varies geographically, variation in surface water isotope ratios indicates the volume-weighted integration of upstream source water. We measured the stable isotope ratios of surface water samples collected in the Snoqualmie River basin in western Washington over June and September 2017 and the 2018 water year. We used ordinary least squares regression and geostatistical Spatial Stream Network models to relate surface water isotope ratios to mean watershed elevation (MWE) across seasons. Geologic and discharge data was integrated with water isotopes to create a conceptual model of streamflow generation for the Snoqualmie River. We found that surface water stable isotope ratios were lowest in the spring and highest in the dry, Mediterranean summer, but related strongly to MWE throughout the year. Low isotope ratios in spring reflect the input of snowmelt into high elevation tributaries. High summer isotope ratios suggest that groundwater is sourced from low elevation areas and recharged by winter precipitation. Overall, our results suggest that baseflow in the Snoqualmie River may be relatively resilient to predicted warming and subsequent changes to snowpack in the Pacific Northwest.  相似文献   
15.
In this paper, we describe a high-frequency (HF) radar capable of multifrequency operation over the HF band for dual-use application to ship classification and mapping ocean current shear and vector winds. The radar is based on a digital transceiver peripheral component interconnect (PCI) card family that supports antenna arrays of four to 32 elements with a single computer, with larger arrays possible using multiple computers and receiver cards. The radar makes use of broadband loop antennas for receive elements, and a number of different possibilities for transmit antennas, depending on the operating bandwidth desired. An option exists in the choice of monostatic or multistatic operation, the latter providing the ability to use several transmit sites, with all radar echo signal reception and processing conducted at a single master receiver site. As applications for such a multifrequency radar capability, we show measurement and modeling examples of multiple frequency HF radar cross section (RCS) of ships as an approach to ship target classification. Results of using 32 radar frequencies to measure the fine structure in ocean current vertical shear are also shown, providing evidence of one edge of a 1-3-m deep uniform flow masked at the surface by wind-driven current shear in a different direction. Other applications of current-shear measurements, such as vector wind mapping and volumetric current estimation in coastal waters, are also discussed  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号