首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   20篇
  国内免费   11篇
测绘学   4篇
大气科学   37篇
地球物理   156篇
地质学   154篇
海洋学   49篇
天文学   44篇
自然地理   81篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   8篇
  2019年   9篇
  2018年   14篇
  2017年   8篇
  2016年   11篇
  2015年   17篇
  2014年   11篇
  2013年   30篇
  2012年   21篇
  2011年   18篇
  2010年   26篇
  2009年   20篇
  2008年   38篇
  2007年   23篇
  2006年   18篇
  2005年   22篇
  2004年   18篇
  2003年   15篇
  2002年   14篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1987年   7篇
  1986年   3篇
  1984年   8篇
  1983年   6篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1975年   2篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1968年   2篇
排序方式: 共有525条查询结果,搜索用时 0 毫秒
21.
Geochemical studies of long-lived volcanic complexes are crucial for the understanding of the nature and composition of the subduction component of arc magmatism. The Pichincha Volcanic Complex (Northern Andean Volcanic Zone) consists of: (1) an old, highly eroded edifice, the Rucu Pichincha, whose lavas are mostly andesites, erupted from 1,100 to 150 ka; and (2) a younger, essentially dacitic, Guagua Pichincha composite edifice, with three main construction phases (Basal Guagua Pichincha, Toaza, and Cristal) which developed over the last 60 ka. This structural evolution was accompanied by a progressive increase of most incompatible trace element abundances and ratios, as well as by a sharp decrease of fluid-mobile to fluid-immobile element ratios. Geochemical data indicate that fractional crystallization of an amphibole-rich cumulate may account for the evolution from the Guagua Pichincha andesites to dacites. However, in order to explain the transition between the Rucu Pichincha andesites and Guagua Pichincha dacites, the mineralogical and geochemical data indicate the predominance of magma mixing processes between a mafic, trace-element depleted, mantle-derived end-member, and a siliceous, trace-element enriched, adakitic end-member. The systematic variation of trace element abundances and ratios in primitive samples leads us to propose that the Rucu Pichincha magmas came from a hydrous-fluid metasomatized mantle wedge, whereas Guagua Pichincha magmas are related to partial melting of a siliceous-melt metasomatized mantle. This temporal evolution implies a change from dehydration to partial melting of the slab, which may be associated with an increase in the geothermal gradient along the slab due to the presence of the subducted Carnegie Ridge at the subduction system. This work emphasizes the importance of studying arc-magma systems over long periods of time (of at least 1 million of years), in order to evaluate the potential variations of the slab contribution into the mantle source of the arc magmatism.  相似文献   
22.
23.
The oxygen fugacity (fO2) of the Earth's upper mantle appears to lie somewhat above that of the iron-wüstite buffer, its fO2 is assumed to have been similar to the present value at the time of core formation. In the upper mantle, the Fe-rich liquid protocore that would form under such conditions of fO2 at elevated temperatures would lie predominantly in the system Fe-S-O. Distribution coefficients for Co, Cu, Ni, Ir, Au, Ir, W, Re, Mo, Ag and Ga between such liquids and basalt are known and minimum values are known for Ge. From these coefficients, upper mantle abundances for the above elements can be calculated by assuming cosmic abundances for the whole Earth and equilibrium between the Fe-S-O protocore and upper mantle. These calculated abundances are surprisingly close to presently known upper mantle abundances; agreements are within a factor of 5, except for Cu, W, and Mo. Therefore, siderophile element abundances in the upper mantle based on known distribution coefficients do not demand a late-stage meteoritic bombardment, and a protocore formed from the upper mantle containing S and O seems likely.As upper mantle abundances fit a local equilibrium model, then either the upper mantle has not been mixed with the rest of the mantle since core formation, or else partition coefficients between protocore and mantle were similar for the whole mantle regardless of P, T, and fO2. The latter possibility seems unlikely over such a P-T range.  相似文献   
24.
Siliceous oncoids, up to 4 cm in diameter, are common on the laterally extensive sinter aprons that surround the spectacular geysers and hot springs at El Tatio in northern Chile. Many of these complex oncoids developed close to geyser and spring vents that discharge boiling water. Internally the oncoids, which are composed of precipitated amorphous silica, are formed of complex arrays of spicules and concentric laminae as well as detrital volcanic grains. Spicular growth is dominant in most examples. The formation and growth of the spicules and concentric laminae were mediated by a microbial community which included filamentous microbes, mucus, and possibly bacteria. The microbes and mucus were silicified by replacement and encrustation. In some laminae the filamentous microbes lay parallel to the growth surface; in other laminae most filaments forming the thin mats were suberect. Amorphous silica precipitated between the filaments occluded porosity and commonly disguised the microbial fabric. The oncoids grew on the proximal sinter aprons around the geyser vents and hot spring pools. Most growth took place subaerially with the silica delivered to the precipitation sites by splashing water from the geysers and/or periodic shallow flooding of the discharge aprons. Unlike silica oncoids at other geothermal sites, vertical growth of oncoids that formed in some rimstone pools was not limited by water depth.  相似文献   
25.
The SW England Rhenohercynian passive margin initiated with rift-related non-marine sedimentation and bimodal magmatism (Late Lockhovian). Continued lithospheric extension resulted in the exhumation of mantle peridotites and limited seafloor spreading (Emsian-Eifelian). Variscan convergence commenced during the Late Eifelian and was coeval with rifting further north. Collision was marked by the Early Carboniferous emergence of deep marine sedimentary/volcanic rocks from the distal continental margin, oceanic lithosphere, pre-rift basement and upper plate gneisses (correlated with the Mid-German Crystalline High of the Saxothuringian Zone). Progressive inversion of the passive margin was strongly influenced by rift basin geometry. Convergence ceased in the Late Carboniferous and was replaced by an extensional regime that reactivated basin controlling/thrust faults and reorientated earlier fabrics (Start-Perranporth Zone). The resultant exhumation of the lower plate was accompanied by emplacement of the Early Permian SW England granites and was contemporaneous with upper plate sedimentary basin formation above the reactivated Rhenohercynian suture. The Rhenohercynian passive margin probably developed in a marginal basin north of the Rheic Ocean or, possibly, a successor basin following its closure. The Lizard ophiolite is unlikely to represent Rheic Ocean floor or associated forearc (SSZ) crust. The Rheic and Rhenohercynian sutures may be coincident or the Rheic suture may be located further south in the Léon Domain.  相似文献   
26.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
27.
Oxidation of sulphide mining waste can generate acid mine drainage (AMD) that has the potential to seriously affect the ecosystems. Acid mine drainage is characterised by a high acidity, high concentrations of sulphates and metals. To reduce the environmental impacts due to AMD, neutralisation using limestone drains is an option proposed in the literature and used around the world. The present study focuses on the influence of the carbonate rock mineralogy and their particle size on the neutralising capacity. The tests were performed in two different anoxic conditions: in batch reactors, and in columns having a hydraulic retention time of 15?h. The results showed that the neutralisation capacity of calcite was more important than for dolomitic rock, and smaller particle size gave higher alkalinity production (fine calcite dissolved faster in contact with AMD). A characterization of metal precipitate in sludge and in limestone coating was performed and demonstrated that gypsum, lepidocrocite and goethite were the predominant secondary minerals to be formed. Finally, this study underlines that anoxic limestone drain cannot be used alone to treat high iron concentrated AMD.  相似文献   
28.
Recent studies in northern Switzerland have shown that epicontinental areas thought to have been tectonically stable during the Mesozoic were not necessarily as rigid as presumed. By comparing Oxfordian facies boundaries and depocenters in their palinspastic position with known faults in the basement, a direct relationship between the two can be demonstrated. Previously, the lack of obvious synsedimentary tectonic features has lulled scientists into believing that the realm of the Swiss Jura was tectonically stable during the Mesozoic. However, it can be shown that facies and sedimentary structures are largely influenced by tectonics. Subsurface data provide evidence for the presence of Paleozoic troughs in the basement which, apparently, were prone to reactivation during the Pan-European stress-field reorganization taking place in the Late Jurassic. This led to differential subsidence along pre-existing lineaments within the study area, which can be recognized in the distribution of Oxfordian epicontinental basins and their coeval shallow-water counterparts. Eustatic sea-level fluctuations played an important role in the development of shallow-water facies patterns, but a subordinate role in the control of accommodation space in basins.

While tectonic activity is often recorded in the sedimentary record in the form of platform break-ups and associated sedimentary debris, more subtle indicators may be overlooked or even misinterpreted. Sedimentary structures and isopach maps, as well as subsurface data in the study area suggest that subtle synsedimentary tectonic movements led to the formation of two shallow, diachronous epicontinental basins during the Late Jurassic. It becomes possible to recognize and differentiate the combined effects of local and regional tectonism, eustasy and sedimentation.  相似文献   

29.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   
30.
Feng  Boyu  Zhang  Ying  Bourke  Robin 《Natural Hazards》2021,106(1):613-627
Natural Hazards - Urbanization increases regional impervious surface area, which generally reduces hydrologic response time and therefore increases flood risk. The objective of this work is to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号