首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
  国内免费   5篇
大气科学   10篇
地球物理   27篇
地质学   23篇
海洋学   1篇
天文学   14篇
自然地理   16篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有91条查询结果,搜索用时 47 毫秒
71.
A sulfur budget for the Black Sea anoxic zone   总被引:1,自引:0,他引:1  
A budget for the sulfur cycle in the Black Sea is proposed which incorporates specific biogeochemical process rates. The average sulfide production in the water column is estimated to be 30–50 Tg yr−1, occurring essentially in the layer between 500 and 2000 m. About 3.2–5.2 Tg sulfide yr−1 form during sulfate reduction in surface sediments of the anoxic zone. Total sulfur burial in anoxic sediments of 1 Tg yr−1 consists of 10–70% (ca. 40–50% is the average) water column formed (syngenetic) component, the rest being diagenetic pyrite. As a maximum, between 3 and 5 Tg yr−1 contribute sulfide to the bottom water or diffuse downward in the sediment. About 20–50 Tg yr−1 sulfide is oxidized mostly at the chemocline and about 10–20% of this amount (4.4–9.2 Tg yr−1) below the chemocline by the oxygen of the Lower Bosphorus Current. A model simulating the vertical distribution of sulfide in the Black Sea water column shows net consumption in the upper layers down to ca. 500 m, essentially due to oxidation at the chemocline, and net production down to the bottom. On the basis of the calculated budget anoxic conditions in the Black Sea are sustained by the balance between sulfide production in the anoxic water column and oxidation at the chemocline. On average the residence time of sulfide in the anoxic zone is about 90–150 yr, comparable to the water exchange time between oxic and anoxic zones. Hydrophysical control on the sulfur cycle appears to be the main factor regulating the extent of anoxic conditions in the Black Sea water column, rather than rates of biogeochemical processes.  相似文献   
72.
Izvestiya, Physics of the Solid Earth - The results of application of the receiver function technique are briefly reviewed. In the mantle transition zone, the topography of the main seismic...  相似文献   
73.
The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and temporal scales. However, there are still challenges for reproducing accurate model-simulated CO_2 concentrations close to the surface, typically associated with high spatial heterogeneity and land cover. In the present study, we evaluated the performance of nested-grid CT model simulations of CO_2 based on the CT2016 version through comparison with in-situ observations over East Asia covering the period 2009–13. We selected sites located in coastal, remote, inland, and mountain areas. The results are presented at diurnal and seasonal time periods. At target stations, model agreement with in-situ observations was varied in capturing the diurnal cycle. Overall, biases were less than 6.3 ppm on an all-hourly mean basis, and this was further reduced to a maximum of 4.6 ppm when considering only the daytime. For instance, at Anmyeondo, a small bias was obtained in winter, on the order of 0.2 ppm. The model revealed a diurnal amplitude of CO_2 that was nearly flat in winter at Gosan and Anmyeondo stations, while slightly overestimated in the summertime. The model's performance in reproducing the diurnal cycle remains a challenge and requires improvement. The model showed better agreement with the observations in capturing the seasonal variations of CO_2 during daytime at most sites, with a correlation coefficient ranging from 0.70 to 0.99. Also, model biases were within-0.3 and 1.3 ppm, except for inland stations(7.7 ppm).  相似文献   
74.
Bunburra Rockhole is a unique basaltic achondrite that has many mineralogical and petrographic characteristics in common with the noncumulate eucrites, but differs in its oxygen isotope composition. Here, we report a study of the mineralogy, petrology, geochemistry, and chronology of Bunburra Rockhole to better understand the petrogenesis of this meteorite and compare it to the eucrites. The geochemistry of bulk samples and of pyroxene, plagioclase, and Ca‐phosphate in Bunburra Rockhole is similar to that of typical noncumulate eucrites. Chronological data for Bunburra Rockhole indicate early formation, followed by slow cooling and perhaps multiple subsequent heating events, which is also similar to some noncumulate eucrites. The 26Al‐26Mg extinct radionuclide chronometer was reset in Bunburra Rockhole after the complete decay of 26Al, but a slight excess in the radiogenic 26Mg in a bulk sample allows the determination of a model 26Al‐26Mg age that suggests formation of the parent melt for this meteorite from its source magma within the first ~3 Ma of the beginning of the solar system. The 207Pb‐206Pb absolute chronometer is also disturbed in Bunburra Rockhole minerals, but a whole‐rock isochron provides a re‐equilibration age of ~4.1 Ga, most likely caused by impact heating. The mineralogy, geochemistry, and chronology of Bunburra Rockhole demonstrate the similarities of this achondrite to the eucrites, and suggest that it formed from a parent melt with a composition similar to that for noncumulate eucrites and subsequently experienced a thermal history and evolution comparable to that of eucritic basalts. This implies the formation of multiple differentiated parent bodies in the early solar system that had nearly identical bulk elemental compositions and petrogenetic histories, but different oxygen isotope compositions inherited from the solar nebula.  相似文献   
75.
The thermal conductivity of a geological formation is one of the important petrophysical parameters which are preferable to study in situ in geophysical well logs. A new technique for the determination of formation thermal conductivity has been developed. We assumed that formation dry density, porosity, and pore fluids saturations could be determined from core samples or cuttings. In this case the specific heat and density of a formation can be quantitatively estimated. It is also assumed that the instantaneous heat flow rate and time data are available for a cylindrical probe with a variable heat flow rate placed in a wellbore. A semi-theoretical equation describing the temperature of the probe’s wall is used to determine in situ the formation conductivity as a function of the temperature increase. The formation thermal diffusivity is also calculated. A field example is presented.  相似文献   
76.
77.
This paper presents data on REE and Y, Nb, Zr, Hf, Ta, Th and U abundances for two candidate reference materials (RMs), spinel lherzolite LSHC-1 and amphibole Amf-1, being currently developed at the Institute of Geochemistry SB RAS, Irkutsk. To determine the contents of these elements inductively coupled plasma-mass spectrometry was applied with: (i) solution nebulisation (solution ICP-MS) and (ii) laser ablation (LA-ICP-MS) of fused glass disks. The precision of results obtained by both techniques was better than 6% RSD for most elements. Accuracy was assessed by using the geochemical RMs JB-2, JGb-1 (GSJ) and MAG-1 (USGS). The trace element results by solution ICP-MS for JGb-1 and JB-2 agree with reference values presented by Imai et al. (1995, this Journal) within 1–10%. Significant differences were found for Nb and Ta determinations. The accuracy of LA-ICP-MS results evaluated by RM MAG-1 was within 4%, except for Eu (about 10%). The analytical results obtained for LSHC-1 and Amf-1 by solution ICP-MS and LA-ICP-MS were in good agreement with each other and with INAA and XRF data presented for the certification of these RMs. They can be considered as the indicative values for assigning certified values to the above-mentioned RMs.  相似文献   
78.
Summary The problem of the thermal circulation over the underlying surface, has been studied analytically for the case when the temperature of the underlying surface depends linearly on one of the horizontal coordinates. A horizontal pressure gradient is specified at the upper boundary of the medium horizontal layer (that has been rotating around the vertical axis) being under consideration, and this fact provides the existence of the background horizontal flow. The problem is essentially nonlinear, since, first, the heat advection, second, the square friction and the heat exchange at the underlying surface are taken into account. The solution depends on three non-dimensional parameters that are determined by the absolute values of the specified horizontal temperature and pressure gradients and by the angle between these vectors. In dependence on the values of the above mentioned parameters the solution properties may be very different. When the horizontal temperature gradient is absent, the solution is a generalization of the Ekman boundary layer classical theory for a case of the nonlinear friction against the underlying surface. The temperature and pressure fields essentially depend on the existence or absence of the background motion velocity component in the direction of the temperature horizontal gradient.With 2 Figures  相似文献   
79.
In air stratified by a specific humidity gradient, the vertical motions result in variations in specific humidity (mixing ratio) near the underlying surface. This, in turn, causes a variation of evaporation from the surface, resulting in horizontal thermal inhomogeneities on the surface, which under certain conditions can strengthen the initial vertical motions. The linear problem of the stability of the system under consideration is solved in this paper, boundaries of the unstable region are defined, and specific values of growth rates of disturbances are investigated. The estimates show that even in a density-stratified atmospheric layer over a moist surface, rapid development of disturbances with horizontal scales of several hundred metres is possible. The horizontal sizes of the most rapidly growing modes, as a rule, are an order of magnitude larger than the vertical sizes. The possibility of observing this instability under natural conditions is discussed.  相似文献   
80.
This paper considers the evolution of a flat svarm of cometary bodies (under the effect of the passage of stars), initially moving in one direction along the circular orbits with radii 1.4×104<r<2×104 AU and along elliptic orbits with semi-major axes 5×103<a<1×104 AU and with perihelia within 50<q<100 AU. Numerical simulation shows that the original flat belt of comets is thermalizing. Its root-mean-squarez-coordinate grows withr. A cometary cloud forms with a dense flattened inner core and a rarefied halo (the Oort cloud proper). The value =N core/N halo varies within a wide range (up to the order of magnitude) depending on the model used (N core andN halo are the numbers of comets in the core and the halo, respectively).The hypothesis of a massive Oort cloud (Marochniket al., 1988) implies that the Oort cloud should have a large angular momentum. This paper employs numerical simulation to calculate Oort cloud models to which the initially flat located at the periphery of the solar nebula rotating cometary swarms is evolving in time. The loss of the initial angular momentum over the time of the Oort cloud evolution is not large.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号