首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
测绘学   1篇
大气科学   5篇
地球物理   47篇
地质学   28篇
海洋学   9篇
天文学   39篇
自然地理   11篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   3篇
  2010年   4篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
31.
Fault network of the Upper Silesian Coal Basin (USCB) is built of sets of strike-slip, oblique-slip and dip-slip faults. It is a typical product of force couple which acts evenly with the parallel of latitude, causing horizontal and anti-clockwise movement of rock-mass. Earlier research of focal mechanisms of mine tremors, using a standard fault plane solution, has shown that some events are related to tectonic directions in main structural units of the USCB. An attempt was undertaken to analyze the records of mine tremors from the period 1992–1994 in the selected coal fields. The digital records of about 200 mine tremors with energy larger than 1×104 J (M L >1.23) were analyzed with SMT software for seismic moment tensor inversion. The decomposition of seismic moment tensor of mine tremors was segmented into isotropic (I) part, compensated linear vector dipole (CLVD) part and double-couple (DC) part. The DC part is prevalent (up to 70%) in the majority of quakes from the central region of the USCB. A group of mine tremors with large I element (up to 50%) can also be observed. The spatial orientation of the fault and auxiliary planes were obtained from the computations for the seismic moment DC part. Study of the DC part of the seismic moment tensor made it possible for us to separate the group of events which might be acknowledged to have their origin in unstable energy release on surfaces of faults forming a regional structural pattern. The possible influence of the Cainozoic tectonic history of the USCB on the recent shape of stress field is discussed.  相似文献   
32.
Future physical and chemical changes to the ocean are likely to significantly affect the distribution and productivity of many marine species. Tuna are of particular importance in the tropical Pacific, as they contribute significantly to the livelihoods, food and economic security of island states. Changes in water properties and circulation will impact on tuna larval dispersal, preferred habitat distributions and the trophic systems that support tuna populations throughout the region. Using recent observations and ocean projections from the CMIP3 and preliminary results from CMIP5 climate models, we document the projected changes to ocean temperature, salinity, stratification and circulation most relevant to distributions of tuna. Under a business-as-usual emission scenario, projections indicate a surface intensified warming in the upper 400 m and a large expansion of the western Pacific Warm Pool, with most surface waters of the central and western equatorial Pacific reaching temperatures warmer than 29 °C by 2100. These changes are likely to alter the preferred habitat of tuna, based on present-day thermal tolerances, and in turn the distribution of spawning and foraging grounds. Large-scale shoaling of the mixed layer and increases in stratification are expected to impact nutrient provision to the biologically active layer, with flow-on trophic effects on the micronekton. Several oceanic currents are projected to change, including a strengthened upper equatorial undercurrent, which could modify the supply of bioavailable iron to the eastern Pacific.  相似文献   
33.
34.
The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene–Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameters within the ice enables the base of the Holocene, as reflected in the first signs of climatic warming at the end of the Younger Dryas/Greenland Stadial 1 cold phase, to be located with a high degree of precision. This climatic event is most clearly reflected in an abrupt shift in deuterium excess values, accompanied by more gradual changes in δ18O, dust concentration, a range of chemical species, and annual layer thickness. A timescale based on multi‐parameter annual layer counting provides an age of 11 700 calendar yr b2 k (before AD 2000) for the base of the Holocene, with a maximum counting error of 99 yr. A proposal that an archived core from this unique sequence should constitute the Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) has been ratified by the International Union of Geological Sciences. Five auxiliary stratotypes for the Pleistocene–Holocene boundary have also been recognised. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
35.
F. Worrall  T. P. Burt  J. Adamson 《水文研究》2008,22(16):3181-3193
This study considers three long records of dissolved organic carbon (DOC) flux from two catchments with peat‐covered headwaters. The catchments vary in size from 11 to 818 km2 and the records are at least 12 years old, with one record going back to 1965. The study compares both annual and monthly DOC flux records with a range of hydroclimatic indicators in order to test which component of droughts may contribute to increasing DOC flux. The study found that: (1) there was no significant correlation between any of the proposed drought variables and DOC flux in any of the study catchments over periods of up to 34 years; (2) the most important variable for explaining the DOC flux was the runoff from the catchments overlying a seasonal cycle and an underlying upward trend was present in some records; (3) the residual time‐series, after removal of the best‐fit models, showed no evidence of increased production after times of severe drought. The lack of any evidence for any additional biogeochemical reactions associated with drought supports evidence that DOC loss from peat is limited by its solubility and that its production is fast on the time‐scale of runoff events. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
36.
Measurements of the velocities of galaxies thought to be associated with the giant radio galaxy NGC 6251 confirm the presence of a poor cluster with a systemic redshift of and a line-of-sight velocity dispersion of z =283(+109,52) km s1. This suggests a cluster atmosphere temperature of T =0.7(+0.6,0.2) keV, which is not enough to confine the radio jet by gas pressure. The core of NGC 6251 shows strong emission lines of [O  iii ] and H +[N  ii ], but there is no evidence for line emission from the jet (detected in optical continuum by Keel).  相似文献   
37.
The Holocene, which currently spans ~11 700 years, is the shortest series/epoch within the geological time scale (GTS), yet it contains a rich archive of evidence in stratigraphical contexts that are frequently continuous and often preserved at high levels of resolution. On 14 June 2018, the Executive Committee of the International Union of Geological Sciences formally ratified a proposal to subdivide the Holocene into three stages/ages, along with their equivalent subseries/subepochs, each anchored by a Global boundary Stratotype Section and Point (GSSP). The new stages are the Greenlandian (Lower/Early Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP2 ice core and dated at 11 700 a b2k (before 2000 CE); the Northgrippian (Middle Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP1 ice core and dated at 8236 a b2k; and the Meghalayan (Upper/Late Holocene Subseries/Subepoch) with its GSSP in a speleothem from Mawmluh Cave, north‐eastern India, with a date of 4250 a b2k. We explain the nomenclature of the new divisions, describe the procedures involved in the ratification process, designate auxiliary stratotypes to support the GSSPs and consider the implications of the subdivision for defining the Anthropocene as a new unit within the GTS.  相似文献   
38.
39.
The flux of fluvial carbon from the terrestrial biosphere to the world's oceans is known to be an important component of the global carbon cycle, but within this pathway, the flux and return of carbon to the river network via sewage effluent has not been quantified. In this study, monitoring data from 2000 to 2016 for the dissolved organic carbon (DOC) concentration, biochemical oxygen demand, and chemical oxygen demand of the final effluent of sewage treatment works from across England were examined to assess the amount of DOC contributing to national‐scale fluvial fluxes of carbon. The study shows that the median concentration of DOC in final effluent was 9.4 compared with 4.8 mg C/L for all surface waters for the United Kingdom over the study period and that the DOC in final effluent significantly declined over the study period from 11.0 to 6.4 mg C/L. Rivers receiving sewage effluent showed a significant, on average 19%, increase in DOC concentration downstream of sewage discharges. At the scale of the United Kingdom, the flux of DOC in final effluent was 31 ktonnes C/year with a per capita export of 0.55 kg C/year and compared with an average annual flux of DOC from the United Kingdom of 859 ktonnes C/year, that is, only 3.6% of national‐scale flux. The lability of this DOC was limited, with only 7.4% loss of final effluent DOC concentration over in‐stream residence times of up to 5 days. The direct decline in DOC concentration from sewage treatment works was not large enough on its own to explain the declines observed in DOC concentration in U.K. rivers at their tidal limit.  相似文献   
40.
The onsite treatment of sewage is common in all rural and regional areas of the world. Due to the public health and environmental risks that these treatment systems pose, the need for adopting performance-based management strategies is gaining increasing recognition. This demands the establishment of performance objectives for onsite sewage treatment and disposal which are based on stringent scientific analysis. A research project was undertaken to identify and investigate the role of influential site and soil characteristics in the treatment performance of subsurface effluent disposal areas. The treatment performances of a number of septic systems on a range of site and soil conditions were investigated together with detailed soil analysis. The changes to soil physico-chemical characteristics of the disposal area due to effluent application and its effluent renovation capacity were found to be directly related to the subsurface drainage characteristics. Significant changes to exchangeable cations and chemical parameters such as pH, electrical conductivity and cation exchange capacity (CEC) can result due to subsurface effluent application. A relationship exists between chemical parameters such as exchangeable Na and Ca:Mg ratio and CEC. A strong correlation also exists between the depth to the restrictive subsurface horizon and observed treatment performance. The study confirmed that soil chemistry can be a valuable predictive tool for evaluating the long-term performance of sewage effluent disposal systems particularly in poorly drained sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号