首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   25篇
  国内免费   11篇
测绘学   15篇
大气科学   90篇
地球物理   123篇
地质学   247篇
海洋学   51篇
天文学   69篇
自然地理   32篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   9篇
  2020年   12篇
  2019年   14篇
  2018年   16篇
  2017年   13篇
  2016年   21篇
  2015年   16篇
  2014年   30篇
  2013年   46篇
  2012年   35篇
  2011年   46篇
  2010年   28篇
  2009年   62篇
  2008年   38篇
  2007年   34篇
  2006年   33篇
  2005年   34篇
  2004年   21篇
  2003年   8篇
  2002年   32篇
  2001年   9篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   9篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有627条查询结果,搜索用时 406 毫秒
311.
The Einstein Gravity Explorer mission (EGE) is devoted to a precise measurement of the properties of space-time using atomic clocks. It tests one of the most fundamental predictions of Einstein’s Theory of General Relativity, the gravitational redshift, and thereby searches for hints of quantum effects in gravity, exploring one of the most important and challenging frontiers in fundamental physics. The primary mission goal is the measurement of the gravitational redshift with an accuracy up to a factor 104 higher than the best current result. The mission is based on a satellite carrying cold atom-based clocks. The payload includes a cesium microwave clock (PHARAO), an optical clock, a femtosecond frequency comb, as well as precise microwave time transfer systems between space and ground. The tick rates of the clocks are continuously compared with each other, and nearly continuously with clocks on earth, during the course of the 3-year mission. The highly elliptic orbit of the satellite is optimized for the scientific goals, providing a large variation in the gravitational potential between perigee and apogee. Besides the fundamental physics results, as secondary goals EGE will establish a global reference frame for the Earth’s gravitational potential and will allow a new approach to mapping Earth’s gravity field with very high spatial resolution. The mission was proposed as a class-M mission to ESA’s Cosmic Vision Program 2015–2025.
S. SchillerEmail:
  相似文献   
312.
ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is an international project, with major contributions from Europe and China and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. A second mission, ASTROD (ASTROD II) is envisaged as a three-spacecraft mission which would test General Relativity to 1 ppb, enable detection of solar g-modes, measure the solar Lense–Thirring effect to 10 ppm, and probe gravitational waves at frequencies below the LISA bandwidth. In the third phase (ASTROD III or Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD II bandwidth.
Wei-Tou NiEmail:
  相似文献   
313.
A data set acquired by eight particle-dedicated instruments set up on the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique, which is French for Instrumented Site for Atmospheric Remote Sensing Research) during the ParisFog field campaign are exploited to document microphysical properties of particles contributing to extinction of visible radiation in variable situations. The study focuses on a 48-hour period when atmospheric conditions are highly variable: relative humidity changes between 50 and 100%, visibility ranges between 65 and 35 000 m, the site is either downwind the Paris area either under maritime influence. A dense and homogeneous fog formed during the night by radiative cooling. In 6 h, visibility decreased down from 30 000 m in the clear-sky regime to 65 m within the fog, because of advected urban pollution (factor 3 to 4 in visibility reduction), aerosol hydration (factor 20) and aerosol activation (factor 6). Computations of aerosol optical properties, based on Mie theory, show that extinction in clear-sky regime is due equally to the ultrafine modes and to the accumulation mode. Extinction by haze is due to hydrated aerosol particles distributed in the accumulation mode, defined by a geometric mean diameter of 0.6 μm and a geometric standard deviation of 1.4. These hydrated aerosol particles still contribute by 20 ± 10% to extinction in the fog. The complementary extinction is due to fog droplets distributed around the geometric mean diameter of 3.2 μm with a geometric standard deviation of 1.5 during the first fog development stage. The study also shows that the experimental set-up could not count all fog droplets during the second and third fog development stages.  相似文献   
314.
The computational cost required by the Ensemble Kalman Filter (EnKF) is much larger than that of some simpler assimilation schemes, such as Optimal Interpolation (OI) or three-dimension variational assimilation (3DVAR). Ensemble optimal interpolation (EnOI), a crudely simplified implementation of EnKF, is sometimes used as a substitute in some oceanic applications and requires much less computational time than EnKF. In this paper, to compromise between computational cost and dynamic covariance, we use the idea of ``dressing' a small size dynamical ensemble with a larger number of static ensembles in order to form an approximate dynamic covariance. The term ``dressing' means that a dynamical ensemble seed from model runs is perturbed by adding the anomalies of some static ensembles. This dressing EnKF (DrEnKF for short) scheme is tested in assimilation of real altimetry data in the Pacific using the HYbrid Coordinate Ocean Model (HYCOM) over a four-year period. Ten dynamical ensemble seeds are each dressed by 10 static ensemble members selected from a 100-member static ensemble. Results are compared to two EnKF assimilation runs that use 10 and 100 dynamical ensemble members. Both temperature and salinity fields from the DrEnKF and the EnKF are compared to observations from Argo floats and an OI SST dataset. The results show that the DrEnKF and the 100-member EnKF yield similar root mean square errors (RMSE) at every model level. Error covariance matrices from the DrEnKF and the 100-member EnKF are also compared and show good agreement.  相似文献   
315.
The Mercury Laser Altimeter on the NASA MESSENGER mission has ranged to several ridges and lobate scarps during two equatorial flybys of the planet Mercury. The tectonic features sampled, like others documented by spacecraft imaging and Earth-based radar, are spatially isolated and have vertical relief in excess of 1 km. The profiles also indicate that the faulting associated with their formation penetrated to tens of kilometers depth into the lithosphere and accommodated substantial shortening. To gain insight into the mechanism(s) of strain accommodation across these structures, we perform analytical and numerical modeling of representative dynamic localization mechanisms. We find that ductile localization due to shear heating is not favored, given our current understanding of thermal gradients and shallow thermal structure of Mercury at the time of ridge and scarp formation, and is likely to be of secondary importance at best. Brittle localization, associated with loss of resistance during fault development or with velocity weakening during sliding on mature faults, is weakly localizing but permits slip to accumulate over geological time scales. The range of shallow thermal gradients that produce isolated faults rather than distributed fault sets under the assumption of modest fault weakening is consistent with previous models for Mercury’s early global thermal history. To be consistent with strain rates predicted from thermal history models and the amount of shortening required to account for the underlying large-offset faults, ridges and scarps on Mercury likely developed over geologically substantial time spans.  相似文献   
316.
We develop, in this paper, an analytical approach of continuous medium type which improves the theory of Janssen and other existing approaches of the same type. This approach allows to calculate the stresses in any point of the ensiled granular medium and to represent as well qualitatively as quantitatively the stress saturation effect. The influence of the friction angles is studied.  相似文献   
317.
This paper presents a synthesis of a multidisciplinary study carried out along the Nîmes Roman aqueduct, located in the southeast part of France. The study was motivated by archaeologists attempting to explain the partial destructions of only one aerial bridge of the aqueduct (Pont de la Lône). Given its close proximity to the Nîmes seismically active fault, a possible seismic origin for the destructions was invoked. Seismologists and structural engineers thus carried out a variety of field and numerical investigations to test the seismic hypothesis. Supporting field evidence was found first along the aerial bridge section of the aqueduct: broken stalactites, arch warping, cracks and destruction of the bridge just above a breast wall shortly after its construction. Secondly, the underground part of the canal was analysed: irregularity in the thickness of calcite deposits of the canal walls, presence of numerous cracks, horizontal shift of the otherwise linear structure of the canal and presence of calcite twins in the deposits, found only where the canal crosses the Nîmes fault system. Numerical modelling and experimental results show that (1) only the Pont de la Lône would have suffered serious damage under seismic solicitation (assuming an M6 earthquake at 10 km distance). The second aerial bridge, the three levels arches Pont du Gard, an historical monument still standing today, would have suffered less damage, due to its very different fundamental frequency of around 0.4 Hz, far from the amplified seismic near-field spectrum; (2) the numerical models also show that a fall of the canal wall would require a higher magnitude event (M > 6); (3) the presence of calcite twinning requires a differential static stress of 4 MPa or greater, which can only be achieved very close to the fault rupture of a M > 6 earthquake; (4) finally, local surface rupturing of such a fault would also corroborate the hypothesis that the observed offset of the canal may be partly seismically induced. Although other possible origins for each individual evidence may not be excluded, the observed spatiotemporal concentration of architectural/geological anomalies together with the numerical results allow us to support a possible co-seismic origin for these disorders, indirectly attesting to the potential seismic activity (M > 6) of the nearby Nîmes fault. Furthermore, following the conclusions of archaeological studies, the disorders occurred between 250 and 350 year AD, thus providing timing for this possible seismic event, an essential parameter in seismic hazard analysis. These results validate the archaeo-seismological approach as a tool that may help improve the knowledge of major infrequent earthquakes in areas of moderate seismic activity.  相似文献   
318.
The Oligocene-early Miocene Chitarwata Formation records a critical interval of terrestrial sedimentation that predates the Siwalik deposits on the Potwar Plateau of north-central Pakistan. This Oligocene-early Miocene time interval has long been considered as lacking in the entire Indo-Pakistan region. The Chitarwata Formation is widely exposed in the Sulaiman Range, but has never been described in detail in the Sulaiman Lobe, where the famous fossiliferous strata called ‘Bugti Bone Beds’ have been known for over a century and half. The Chitarwata Formation represents coastal-delta at the base, and plain and fluvial environments at the top. Lithofacies and sedimentary structures of the Chitarwata Formation in the Bugti area are described in detail, and show a clearly distinct lithologic pattern, different from that reported from the Zinda Pir area. The Chitarwata Formation also records an important transition in the evolution of the drainage systems in the area during the late Paleogene and early Neogene. This transition from the west-flowing paleo-Indus fluvial system to the development of the ancestral Indus drainage system may explain the numerous hiatuses that characterize the Chitarwata Formation. The abundance of fossil mammals from the Chitarwata and overlying Vihowa formation in the Bugti Hills provides critical biochronologic information that sheds new light on biostratigraphic correlation with the Zinda Pir area and for the entire Sulaiman Range.  相似文献   
319.
The GENESIS space mission recovered ions emitted by the Sun during a 27 month period. In order to extract, purify and determine the very low quantities of solar nitrogen implanted in the GENESIS targets, a new installation was developed and constructed at the CRPG (Nancy, France). It permitted the simultaneous determination of nitrogen and noble gases extracted from the target by laser ablation. The extraction procedure used a 193 nm excimer laser that allowed for surface contamination in the outer 5 nm to be removed, followed by a step that removed 50 nm of the target material, extracting the solar nitrogen and noble gases implanted in the target. Following purification using Ti and Zr getters for noble gases and a Cu-CuO oxidation cycle for N2, the extracted gases were analysed by static mode (pumps closed) mass spectrometry using electron multiplier and Faraday cup detectors. The nitrogen blanks from the purification section and the static line (30 minutes) were only 0.46 picomole and 0.47 picomole, respectively.  相似文献   
320.
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (~ 0.7–0.8‰·°C?1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C?1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m?2.yr?1 may record a seasonal cycle at shallow depths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号