首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   66篇
  国内免费   12篇
测绘学   14篇
大气科学   57篇
地球物理   284篇
地质学   310篇
海洋学   105篇
天文学   94篇
综合类   5篇
自然地理   67篇
  2024年   5篇
  2023年   8篇
  2022年   7篇
  2021年   24篇
  2020年   33篇
  2019年   35篇
  2018年   35篇
  2017年   39篇
  2016年   47篇
  2015年   39篇
  2014年   46篇
  2013年   49篇
  2012年   50篇
  2011年   59篇
  2010年   59篇
  2009年   48篇
  2008年   41篇
  2007年   40篇
  2006年   29篇
  2005年   30篇
  2004年   35篇
  2003年   23篇
  2002年   25篇
  2001年   16篇
  2000年   17篇
  1999年   11篇
  1998年   9篇
  1997年   11篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有936条查询结果,搜索用时 250 毫秒
931.
932.
Fe released into solution is isotopically lighter (enriched in the lighter isotope) than hornblende starting material when dissolution occurs in the presence of the siderophore desferrioxamine mesylate (DFAM). In contrast, Fe released from goethite dissolving in the presence of DFAM is isotopically unchanged. Furthermore, Δ56Fesolution-hornblende for Fe released to solution in the presence of ligands varies with the affinity of the ligand for Fe. The extent of isotopic fractionation of Fe released from hornblende also increases when experiments are agitated continuously. The Fe isotope fractionation observed during hornblende dissolution with organic ligands is attributed predominantly to retention of 56Fe in an altered surface layer, while the lack of isotopic fractionation during goethite dissolution in DFAM is consistent with the lack of an altered layer. When a siderophore-producing soil bacterium is added to the system (without added organic ligands), Fe released to solution from both hornblende and goethite differs isotopically from Fe in the bulk mineral: Δ56Fesolution-starting material = −0.56 ± 0.19 (hornblende) and −1.44 ± 0.16 (goethite). Increased isotopic fractionation is attributed in this case to the fact that as bacterial respiration depletes the system in oxygen and aqueous Fe is reduced, equilibration between aqueous ferrous and ferric iron creates a pool of isotopically heavy ferric iron that is assimilated by bacterial cells. Adsorption of isotopically heavy ferrous iron (Fe(II) enriched in the heavier isotope) or precipitation of isotopically heavy Fe minerals may also contribute to observed fractionations.To test whether these Fe isotope signatures are recorded in natural systems, we also investigated extractions of samples of soils from which the bacteria were isolated. These extractions show variability in the isotopic signatures of exchangeable Fe and Fe oxyhydroxide fractions from one soil sample to another, but exchangeable Fe is observed to be lighter than Fe in soil Fe oxyhydroxides and hornblende. This observation is consistent with isotopically light Fe-organic complexes in soil pore water derived from the Fe-silicate starting materials in the presence of growing microorganisms, as documented in experiments reported here. The contributions from phenomena including organic ligand-promoted nonstoichiometric dissolution of Fe silicates, uptake of ferric iron by organisms, adsorption of isotopically heavy ferrous iron, and precipitation of iron minerals should create complex isotopic signatures in soils. Better understanding of these processes and the timescales over which they contribute to fractionation is needed.  相似文献   
933.
The influence of Zn speciation on Zn transport by drainage from different soils to surface water is examined in a stream catchment in an agricultural area. Drainage waters were collected from two types of soils, a mineral soil (MS) and a soil rich in organic matter (OS) by means of artificial drainage pipes. The speciation of dissolved Zn in the stream and the drainage waters was determined using ligand-exchange and voltammetry. About 50–95% of dissolved Zn is bound in strong complexes, and the free Zn2+ ion concentration is in the range of 1–16% of dissolved Zn. A substantial part of Zn is present in weaker organic or inorganic complexes. The simulated Zn speciation using the WHAM VI model is compared to the determined speciation. Free Zn2+ concentrations predicted by the WHAM VI model are generally higher than the analytically determined free Zn2+, but are mostly within the same order of magnitude. Effects of different soil organic matter content on Zn speciation and transport are discussed. Zn speciation in the drainage at the OS site is influenced by the distribution of organic matter between the solid and solution phase. The abundant organic Zn complexes in solution contribute to facilitate Zn transport from soil into surface waters, through the drainage at the OS site. Drainage from the OS site contributes about twice as much Zn input to the receiving water as the MS soil, as related to specific area. The mineral soil contains much lower organic matter, and a part of Zn bound with inorganic phases can hardly be released by dissolved organic ligands, leading to much higher Zn retention at the MS site.  相似文献   
934.
935.
We investigate the geology of Altar North (Cu–Au) and Quebrada de la Mina (Au) porphyry deposits located in San Juan Province (Argentina), close to the large Altar porphyry copper deposit (995 Mt, 0.35% Cu, 0.083 g/t Au), to present constraints on the magmatic processes that occurred in the parental magma chambers of these magmatic-hydrothermal systems. Altar North deposit comprises a plagioclase-amphibole-phyric dacite intrusion (Altar North barren porphyry) and a plagioclase-amphibole-biotite-phyric dacite stock (Altar North mineralized porphyry, 11.98 ± 0.19 Ma). In Quebrada de la Mina, a plagioclase-amphibole-biotite-quartz-phyric dacite stock (QDM porphyry, 11.91 ± 0.33 Ma) crops out. High Sr/Y ratios (92–142) and amphibole compositions of Altar North barren and QDM porphyries reflect high magmatic oxidation states (fO2 = NNO +1.1 to +1.6) and high fH2O conditions in their magmas. Zones and rims enriched in anorthite (An37–48), SrO (0.22–0.33 wt.%) and FeO (0.21–0.37 wt.%) in plagioclase phenocrysts are evidences of magmatic recharge processes in the magma chambers. Altar North and Quebrada de la Mina intrusions have relatively homogeneous isotopic compositions (87Sr/86Sr(t) = 0.70450–0.70466, εNd(t) = +0.2 to +1.2) consistent with mixed mantle and crust contributions in their magmas. Higher Pb isotopes ratios (207Pb/204Pb = 15.6276–15.6294) of these intrusions compared to other porphyries of the district, reflect an increase in the assimilation of high radiogenic Pb components in the magmas. Ages of zircon xenocrysts (297, 210, 204, 69 Ma) revealed that the magmas have experienced assimilation of Miocene, Cretaceous, Triassic and Carboniferous crustal rocks.Fluids that precipitated sulfides in the Altar deposit may have remobilized Pb from the host rocks, as indicated by the ore minerals being more radiogenic (207Pb/204Pb = 15.6243–15.6269) than their host intrusions. Au/Cu ratio in Altar porphyries (average Au/Cu ratio of 0.14 × 10?4 by weight in Altar Central) is higher than in the giant Miocene porphyry deposits located to the south: Los Pelambres, Río Blanco and Los Bronces (Chile) and Pachón (Argentina). We suggest that the increase in Au content in the porphyries of this region could be linked to the assimilation of high radiogenic Pb components in the magmas within these long-lived maturation systems.  相似文献   
936.
New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated 40Ar/39Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 ± 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the 40Ar/39Ar age of 15.21 ± 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 ± 0.06 to 5.72 ± 0.12 Ma have been published previously. New 40Ar/39Ar ages gave an average of 5.12 ± 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new 40Ar/39Ar ages than the previously published ages. Roccastrada glass (Italy) - a new 40Ar/39Ar age, 2.45 ± 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm-2). Defects that might produce "spurious" tracks are virtually absent. An independent 40Ar/39Ar age of 8.77 ± 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号