首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   11篇
  国内免费   6篇
测绘学   5篇
大气科学   36篇
地球物理   90篇
地质学   151篇
海洋学   42篇
天文学   86篇
综合类   1篇
自然地理   23篇
  2022年   5篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   9篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   16篇
  2012年   14篇
  2011年   22篇
  2010年   17篇
  2009年   22篇
  2008年   17篇
  2007年   21篇
  2006年   10篇
  2005年   12篇
  2004年   21篇
  2003年   18篇
  2002年   9篇
  2001年   12篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   12篇
  1984年   8篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1978年   7篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1973年   6篇
  1971年   2篇
  1962年   1篇
排序方式: 共有434条查询结果,搜索用时 15 毫秒
41.
High-pressure crystal structures and compressibilities have been determined by x-ray methods for MgAl2O4 spinel and its isomorph magnetite, Fe3O4. The measured bulk moduli, K, of spinel and magnetite (assuming K′=4) are 1.94±0.06 and 1.86±0.05 Mbar, respectively, in accord with previous ultrasonic determinations. The oxygen u parameter, the only variable atomic position coordinate in the spinel structure (Fd3m, Z=8), decreases with pressure in MgAl2O4, thus indicating that the magnesium tetrahedron is more compressible than the aluminum octahedron. In magnetite the u parameter is unchanged, and both tetrahedron and octahedron display the 1.9 Mbar bulk modulus characteristic of the entire crystal. This behavior contrasts with that of nickel silicate spinel (γ-Ni2SiO4), in which the u parameter increases with pressure because the silicon tetrahedron is relatively incompressible compared to the nickel octahedron.  相似文献   
42.
Uncalibrated radiocarbon data from core PLC92B taken from Wizards Cove in the Pyramid Lake subbasin indicate that the Trego Hot Springs and Wono tephra layers were deposited 23,200 ± 300 and 27,300 ± 30014C yr B.P. (uncorrected for reservoir effect). Sedimentological data from sites in the Pyramid Lake and Smoke Creek–Black Rock Desert subbasins indicate that the Trego Hot Springs tephra layer was deposited during a relatively dry period when Pyramid Lake was at or below its spill point (1177 m) to the Winnemucca Lake subbasin. The Wono tephra layer was deposited when lake depth was controlled by spill across Emerson Pass sill (1207 m) to the Smoke Creek–Black Rock Desert subbasin.18O data from core PLC92B also support the concept that the Trego Hot Springs tephra fell into a relatively shallow Pyramid Lake and that the Wono tephra fell into a deeper spilling lake.  相似文献   
43.
应用等效纬度-海拔模型进行地温及多年冻土制图   总被引:2,自引:2,他引:2  
This research presents a method for permafrost mapping in discontinuous permafrost regions based on equivalent latitude/elevation concept in interior Alaska. In winter months, study site has a strong temperature inversion in air up to 700 m elevation. Air temperature data and the effects of slope, aspect and elevation were used to create an equivalent latitude/elevation model. This model was well correlated with mean annual surface temperature (0.79). In this watershed, the thawing index (It≈1 400 ℃*days) at the ground surface and snow depth do not vary greatly from south facing to north facing slopes. The primary controlled factor that determines the mean annual surface temperature was the winter surface temperature. The permafrost stability is effectively controlled by the freezing index. We determined 37.5% of Caribou-Poker Creeks Research Watershed has unstable or thawing permafrost. At least 2.1% of the permafrost in this watershed may have disappeared in the last 90 years due to climate warming. This method makes it possible to evaluate the permafrost stability in the present, past and future.  相似文献   
44.
A method to characterize reservoirs, based on matching temporal fluctuations in injection and production rates, has recently been developed. The method produces two coefficients for each injector–producer pair; one parameter, λ, quantifies the connectivity and the other, τ, quantifies the fluid storage in the vicinity of the pair. Previous analyses used λ and τ separately to infer the presence of transmissibility barriers and conduits in the reservoir, but several common conditions could not be easily distinguished. This paper describes how λ and τ can be jointly interpreted to enhance inference about preferential transmissibility trends and barriers. Two different combinations are useful: one is a plot of log (λ) versus log (τ) for a producer and nearby injectors, and the second is a Lorenz-style flow capacity (F) versus storativity (C) plot. These techniques were tested against the results of a numerical simulator and applied to data from the North Buck Draw field. Using the simulated data, we find that the FC plots and the λτ plots are capable of identifying whether the connectivity of an injector–producer well pair is through fractures, a high-permeability layer, multiple-layers or through partially completed wells. Analysis of data from the North Buck Draw field shows a reasonable correspondence between τ and the tracer breakthrough times. Of two possible geological models for Buck Draw, the FC and λτ plots support the model that has less connectivity in the field. The wells in fluvial deposits show better communication than those wells in more estuarine-dominated regions.  相似文献   
45.
46.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   
47.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   
48.
The Toodoggone district comprises Upper Triassic to Lower Jurassic Hazelton Group Toodoggone Formation volcanic and sedimentary rocks, which unconformably overlie submarine island-arc volcanic and sedimentary rocks of the Lower Permian Asitka Group and Middle Triassic Takla Group, some of which are intruded by Upper Triassic to Lower Jurassic plutons and dikes of the Black Lake suite. Although plutonism occurred episodically from ca. 218 to 191 Ma, the largest porphyry Cu–Au ± Mo systems formed from ca. 202 to 197 Ma, with minor mineralization occurring from ca. 197 to 194 Ma. Porphyry-style mineralization is hosted by small-volume (<1 km3), single-phase, porphyritic igneous stocks or dikes that have high-K calc-alkaline compositions and are comparable with volcanic-arc granites. The Fin porphyry Cu–Au–Mo deposit is anomalous in that it is 16 m.y. older than any other porphyry Cu–Au ± Mo occurrence in the district and has lower REEs. All porphyry systems are spatially restricted to exposed Asitka and Takla Group basement rocks, and rarely, the lowest member of the Hazelton Group (i.e., the ca. 201 Ma Duncan Member). The basement rocks to intrusions are best exposed in the southern half of the district, where high rates of erosion and uplift have resulted in their preferential exposure. In contrast, low- and high-sulfidation epithermal systems are more numerous in the northern half of the district, where the overlying Hazelton Group rocks dominate exposures. Cogenetic porphyry systems might also exist in the northern areas; however, if they are present, they are likely to be buried deeply beneath Hazelton Group rocks. High-sulfidation epithermal systems formed at ca. 201 to 182 Ma, whereas low-sulfidation systems were active at ca. 192 to 162 Ma. Amongst the studied epithermal systems, the Baker low-sulfidation epithermal deposit displays the strongest demonstrable genetic link with magmatic fluids; fluid inclusion studies demonstrate that its ore fluids were hot (>468°C), saline, and deposited metals at deep crustal depths (>2 km). Sulfur, C, O, and Pb isotope data confirm the involvement of a magmatic fluid, but also suggest that the ore fluid interacted with Asitka and Takla Group country rocks prior to metal deposition. In contrast, in the Shasta, Lawyers, and Griz-Sickle low-sulfidation epithermal systems, there is no clear association with magmatic fluids. Instead, their fluid inclusion data indicate the involvement of low-temperature (175 to 335°C), low-salinity (1 to 11 equiv. wt.% NaCl) fluids that deposited metals at shallow depths (<850 m). Their isotope (i.e., O, H, Pb) data suggest interaction between meteoric and/or metamorphic ore fluids with basement country rocks.  相似文献   
49.
50.
The Late Archean Blake River Group is a thick succession of predominantly mafic volcanic rocks within the southern zone of the Abitibi greenstone belt. It contains a number of silicic volcanic centers of different size, including the large Noranda volcanic complex, which is host to 17 past-producing volcanogenic massive sulfide deposits. The Noranda complex consists of a 7- to 9-km-thick succession of bimodal mafic and felsic volcanic rocks erupted during five major cycles of volcanism. Massive sulfide formation coincided with a period of intense magmatic activity (cycle III) and the formation of the Noranda cauldron. Hydrothermal alteration in these rocks is interpreted to reflect large-scale hydrothermal fluid flow associated with rapid crustal extension and rifting of the volcanic complex. The alteration includes abundant albite, chlorite, epidote and quartz (silicification), which exhibit broad stratigraphic and structural control and correlate with previously mapped whole-rock oxygen isotope zonation. The Mine Sequence volcanic rocks are characterized by abundant iron-rich chlorite (Fe/Fe+Mg >0.5), hydrothermal amphibole (ferroactinolite) and coarse-grained epidote of clinozoisite composition (<10 wt% Fe 2O 3). Volcanic rocks of the pre-cauldron sequences, which contain only subeconomic stringer mineralization, are characterized by less abundant chlorite and mainly fine-grained epidote (>10 wt% Fe 2O 3) lacking the clinozoisite solid solution. Alteration in the Mine Sequence volcanic rocks persists along strike well beyond the limits of the main ore deposits (as far as several tens of kilometers) and can be readily distinguished from greenschist facies metamorphic assemblages at a regional scale. The lack of similar alteration in the pre-cauldron sequences is consistent with limited 18O-depletion and suggests that the early history of the volcanic complex did not support large-scale, high-temperature fluid flow in these rocks. Comparisons with a much smaller, barren volcanic complex in nearby Ben Nevis township reveal important differences in the alteration mineralogy between volcanoes of different size, with implications for area selection during regional-scale mineral exploration. The Ben Nevis Complex consists of a 3- to 4-km-thick succession of mafic, intermediate and felsic volcanic rocks centered on a small subvolcanic intrusion. Alteration of the volcanic rocks comprises mainly low-temperature assemblages of prehnite, pumpellyite, magnesium-rich chlorite (Fe/Fe+Mg <0.5), iron-rich epidote (>10 wt% Fe 2O 3) and calcite. Actinolite ± magnetite alteration occurs proximal to the intrusive core of the complex, but the limited extent of this alteration indicates only local high-temperature fluid circulation adjacent to the intrusion. A distal zone of carbonate alteration is located 4–6 km from the center of the volcano. Although iron-bearing carbonates are present locally within this zone, the absence of siderite argues against a high-temperature origin for this alteration. These observations do not offer positive encouragement for the existence of a fossil geothermal system of sufficient size or intensity to have produced a large massive sulfide deposit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号