首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   2篇
  国内免费   1篇
测绘学   19篇
大气科学   15篇
地球物理   33篇
地质学   71篇
海洋学   1篇
天文学   63篇
综合类   3篇
自然地理   4篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   3篇
  2018年   22篇
  2017年   14篇
  2016年   14篇
  2015年   3篇
  2014年   21篇
  2013年   16篇
  2012年   13篇
  2011年   14篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1970年   1篇
排序方式: 共有209条查询结果,搜索用时 484 毫秒
201.
This paper presents results of a pilot study in six villages located in the states of Haryana, Rajasthan and Madhya Pradesh, to evaluate accuracy of crop area at village level estimated by IRS - LISS-I1I data with respect to detailed field survey carried out by National Sample Survey Organization. The selected villages were located in Karnal, Kota and Bhopal districts which represented single dominant wheat crop as well as wheat-mustard and wheat-gram situation, respectively. Accuracy assessment of remote sensing based estimate with field survey of NSSO showed relative deviation in wheat estimate ranging from 3.72 percent for Mainmati village in Karnal district in Haryana to 22.65 percent fo Ranpur village in Kota district of Rajasthan. It was found that relative deviation in area estimation is inversely poportional to the crop proportion in that village. Observations of over estimation at low crop proportion and underestimation at higher crop proportion was explained by simple budgeting of relative proportion of ommision and commision errors. The study demonstrates that on the average, 90 percent crop area accuracy is possible with LISS-II1 data and the adopted approach.  相似文献   
202.
Approaches to modeling the continuous hydrologic response of ungauged basins use observable physical characteristics of watersheds to either directly infer values for the parameters of hydrologic models, or to establish regression relationships between watershed structure and model parameters. Both these approaches still have widely discussed limitations, including impacts of model structural uncertainty. In this paper we introduce an alternative, model independent, approach to streamflow prediction in ungauged basins based on empirical evidence of relationships between watershed structure, climate and watershed response behavior. Instead of directly estimating values for model parameters, different hydrologic response behaviors of the watershed, quantified through model independent streamflow indices, are estimated and subsequently regionalized in an uncertainty framework. This results in expected ranges of streamflow indices in ungauged watersheds. A pilot study using 30 UK watersheds shows how this regionalized information can be used to constrain ensemble predictions of any model at ungauged sites. Dominant controlling characteristics were found to be climate (wetness index), watershed topography (slope), and hydrogeology. Main streamflow indices were high pulse count, runoff ratio, and the slope of the flow duration curve. This new approach provided sharp and reliable predictions of continuous streamflow at the ungauged sites tested.  相似文献   
203.
Teleseismic earthquake data recorded by 11 broadband digital seismic stations deployed in the India–Asia collision zone in the eastern extremity of the Himalayan orogen (Tidding Suture) are analyzed to investigate the seismic anisotropy in the upper mantle. Shear-wave splitting parameters (Φ and δt) derived from the analysis of core-refracted SKS phases provide first hand information about seismic anisotropy and deformation in the upper mantle beneath the region. The analysis shows considerable strength of anisotropy (delay time ~0.85–1.9 s) with average ENE–WSW-oriented fast polarization direction (FPD) at most of the stations. The FPD observed at stations close to the Tidding Suture aligns parallel to the strike of local geological faults and orthogonal to absolute plate motion direction of the Indian plate. The average trend of FPD at each station indicates that the anisotropy is primarily originated by lithospheric deformation due to India–Asia collision. The splitting data analyzed at closely spaced stations suggest a shallow source of anisotropy originated in the crust and upper mantle. The observed delay times indicate that the primary source of anisotropy is located in the upper mantle. The shear-wave splitting analysis in the Eastern Himalayan syntaxis (EHS) and surrounding regions suggests complex strain partitioning in the mantle which is accountable for evolution of the EHS and complicated syntaxial tectonics.  相似文献   
204.
In the present study, Sentinel-1A Synthetic Aperture Radar analysis of time series data at C-band was carried out to estimate the winter wheat crop growth parameters. Five different date images were acquired during January 2015–April 2015 at different growth stages from tillering to ripening in Varanasi district, India. The winter wheat crop parameters, i.e. leaf area index, vegetation water content (VWC), fresh biomass (FB), dry biomass (DB) and plant height (PH) were estimated using random forest regression (RFR), support vector regression (SVR), artificial neural network regression (ANNR) and linear regression (LR) algorithms. The Ground Range Detected products of Interferometric Wide (IW) Swath were used at VV polarization. The three different subplots of 1 m2 area were taken for the measurement of crop parameters at every growth stage. In total, 73 samples were taken as the training data-sets and 39 samples were taken as testing data-sets. The highest sensitivity (adj. R2?=?0.95579) of backscattering with VWC was found using RFR algorithm, whereas the lowest sensitivity (adj. R2?=?0.66201) was found for the PH using LR algorithm. Overall results indicate more accurate estimation of winter wheat parameters by the RFR algorithm followed by SVR, ANNR and LR algorithms.  相似文献   
205.
International Journal of Earth Sciences - In situ measurements of maximum horizontal stress (SHmax) in the Indian subcontinent are limited and do not present regional trends of intraplate stress...  相似文献   
206.
In this study, the modified stochastic method based on dynamic corner frequency has been used for the simulation of strong ground motions in Gujarat region. The earthquake-generating faults have been identified in the Gujarat region on the basis of past seismicity of the region. In all, 19 probable faults have been identified with 12 in Kachchh region, 5 in Saurashtra and 2 in Mainland Gujarat region. The maximum magnitude has been assigned to each fault based on the regional tectonic environment and past seismicity. The strong ground motions from these identified sources have been estimated at numerous points distributed all over Gujarat region on a grid. The peak ground acceleration (PGA) values have been extracted from the accelerograms and contoured. The spatial distribution of maximum of 19 PGA values at every grid point have been described and discussed. The ground motions at the surface of 32 important cities of the Gujarat have been estimated by incorporating the site amplification functions. The site amplification functions are obtained using the local earthquake data. These cities are located on various types of geological formations. We note that the site amplification functions have modified the character of the records and amplified the acceleration values at almost all the sites. The Kachchh region can expect surface accelerations between 400 and 800 cm/s2, Saurashtra between 100 and 200 cm/s2 and Mainland less than 50 cm/s2 from a future large earthquake. The obtained results are useful for disaster mitigation measures, strengthening the existing built environment and design of structures in the region.  相似文献   
207.
The present study examines the characteristics and climatological features of daily rainfall data over Andaman & Nicobar Islands. Analysis of rainfall data reveals a large monthly deviation over the northern latitudes as compare to southern latitudes of Andaman & Nicobar Islands. Also, it is found that rainfall increases from north to south latitudes in all the seasons except monsoon, where a reverse pattern exists. In trend analysis, a statistically significant decreasing trend (confidence level >95?%) is observed for yearly rainfall and rainy days over the region. Analysis of daily rainfall intensity for each year shows increasing trend for frequency of rather heavy rain (35.6?C64.4?mm) and significant decreasing trend for frequencies of light rain (2.5?C7.5?mm), and very heavy rain (>124.5?mm) over the region. Many times, very heavy rain events are associated with cyclonic disturbances affecting Andaman & Nicobar Islands region. The analysis of cyclonic disturbances over the region reveals a stronger and more significant decreasing trend. So, one of the causes for decreasing trend in very heavy rain over Andaman & Nicobar Islands may be due to significant decreasing frequency of cyclonic disturbances affecting this region.  相似文献   
208.
The impact of source thickness on steady-state plume length is studied using modifications of the analytical expressions provided in Liedl et al. (2005, 2011) for 2D and 3D scenarios. For comparison, 2D and 3D numerical experiments were performed, and the following three important conclusions were obtained: first, the modified expressions overestimate the plume length only up to a factor of 2 when the source thickness (M s ) is at least 50 % of the aquifer depth (M). Second, overestimates do not exceed plume length by a factor of 10 (2D scenario) or 5 (3D scenario) for 25 % < M s /M < 50 %. Third, numerical techniques are recommended for M s  < 25 %. In addition, it was observed that the degradation from the top dominates for M s /M > 50 %. As far as the numerical experiments are concerned, it is important to note that the employed finite element approach was applied to the transformed transport equation provided in both Liedl et al. works. This transformation, which can also be applied to more complex scenarios than those studied here, eliminates reaction terms from the model equations and therefore largely facilitates numerical computations.  相似文献   
209.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号