首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37258篇
  免费   1105篇
  国内免费   1048篇
测绘学   948篇
大气科学   2875篇
地球物理   7660篇
地质学   13781篇
海洋学   3339篇
天文学   8157篇
综合类   240篇
自然地理   2411篇
  2022年   291篇
  2021年   474篇
  2020年   457篇
  2019年   495篇
  2018年   913篇
  2017年   875篇
  2016年   1050篇
  2015年   723篇
  2014年   1049篇
  2013年   1869篇
  2012年   1345篇
  2011年   1788篇
  2010年   1564篇
  2009年   2020篇
  2008年   1699篇
  2007年   1768篇
  2006年   1699篇
  2005年   1221篇
  2004年   1139篇
  2003年   1038篇
  2002年   1005篇
  2001年   845篇
  2000年   825篇
  1999年   672篇
  1998年   716篇
  1997年   690篇
  1996年   572篇
  1995年   562篇
  1994年   479篇
  1993年   421篇
  1992年   419篇
  1991年   386篇
  1990年   457篇
  1989年   373篇
  1988年   356篇
  1987年   438篇
  1986年   346篇
  1985年   430篇
  1984年   531篇
  1983年   451篇
  1982年   452篇
  1981年   403篇
  1980年   419篇
  1979年   360篇
  1978年   345篇
  1977年   340篇
  1976年   309篇
  1975年   296篇
  1974年   312篇
  1973年   340篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
The Hill Country of Central Texas, USA, is undergoing rapid socioeconomic development, but environmental management of this region is hampered by misconceptions about local bedrock, soils, terrain, and hydrologic processes. The Hill Country is underlain mostly by Glen Rose Limestone (Lower Cretaceous) and exhibits a stepped terrain, which has been incorrectly attributed to alternating hard and soft bedrock strata. Other characteristics mistakenly attributed to this landscape include thin soils with scant water-retention capabilities, and rapid runoff as the dominant hydrologic process. This report presents new findings: unweathered bedrock is well indurated, but interbeds exhibit variable weathering rates. Recessive slopes (“risers”) on this stepped terrain result from rapid deterioration of strata having generally heterogeneous depositional fabrics (bioturbation and irregular clay partings) in contrast to ledge-forming strata having homogeneous fabrics. A stony regolith is thus formed beneath risers, providing porous and permeable ground that retards runoff and promotes the formation of moderately deep to deep (two-tiered) regolith/soil zones. These surficial materials on local steep slopes compose important natural environmental buffers; they support diverse biota and enhanced geochemical cycling of nutrients; they also exhibit significant water retention and enhanced erosion abatement. Proper land management demands recognition of these attributes in the siting, design, and construction of facilities.  相似文献   
182.
This paper describes a new procedure for assessing the ratio between in situ stresses in rock masses by means of K (K = σH / σv, being σH and σv principal stress) and tectonics for purposes of engineering geology and rock mechanics. The method combines the use of the logic decision tree and the empirical relationship between the Tectonic Stress Index, TSI, and a series of K in situ values obtained from an extensive database. The decision tree considers geological and geophysical factors affecting stress magnitudes both on the regional and local scale. The TSI index is defined by geological and geomechanical parameters. The method proposed provides an assessment of the magnitude of horizontal stresses of tectonic origin. Results for several regions of Europe are presented and the possible applications of the procedure are discussed.  相似文献   
183.
Lithium concentrations and isotopic compositions of olivine and 87Sr/86Sr and 143Nd/144Nd of coexisting clinopyroxene from peridotite xenoliths from the Quaternary Labait volcano, Tanzania, document the influence of rift-related metasomatism on the ancient cratonic mantle. Olivines show negative correlations between Fo content and both δ7Li and Li concentrations. Olivines in iron-rich peridotites (Fo85–87) have high Li concentrations (3.2–4.8 ppm) and heavy δ7Li (+5.2 to +6.6). In contrast, olivines in ancient, refractory peridotites have lower Li concentrations (∼2 ppm) and relatively light δ7Li (+2.6 to +3.5). This reflects mixing between ancient, refractory cratonic lithosphere and asthenosphere-derived rift magmas. A uniquely fertile, deformed, high-temperature garnet lherzolite, interpreted to be from the base of the lithosphere, has a 87Sr/86Sr of 0.7029 and 143Nd/144Nd of 0.51286, similar to HIMU oceanic basalts. It provides the best estimate of the Sr–Nd isotope composition of the upwelling mantle (i.e., plume, sensu lato) underlying this portion of the East African Rift, and is slightly less radiogenic compared to previous estimates of the plume that were based on rift basalts. Although elevated δ7Li are not exclusive to HIMU source regions, the data collectively indicate that the plume beneath Labait has HIMU characteristics in Sr, Nd and Li isotope composition. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
184.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
185.
Sorption of U(VI) to goethite is a fundamental control on the mobility of uranium in soil and groundwater. Here, we investigated the sorption of U on goethite using EXAFS spectroscopy, batch sorption experiments and DFT calculations of the energetics and structures of possible surface complexes. Based on EXAFS spectra, it has previously been proposed that U(VI), as the uranyl cation , sorbs to Fe oxide hydroxide phases by forming a bidentate edge-sharing (E2) surface complex, >Fe(OH)2UO2(H2O)n. Here, we argue that this complex alone cannot account for the sorption capacity of goethite (α-FeOOH). Moreover, we show that all of the EXAFS signal attributed to the E2 complex can be accounted for by multiple scattering. We propose that the dominant surface complex in CO2-free systems is a bidentate corner-sharing (C2) complex, (>FeOH)2UO2(H2O)3 which can form on the dominant {101} surface. However, in the presence of CO2, we find an enhancement of UO2 sorption at low pH and attribute this to a (>FeO)CO2UO2 ternary complex. With increasing pH, U(VI) desorbs by the formation of aqueous carbonate and hydroxyl complexes. However, this desorption is preceded by the formation of a second ternary surface complex (>FeOH)2UO2CO3. The three proposed surface complexes, (>FeOH)2UO2(H2O)3, >FeOCO2UO2, and (>FeOH)2UO2CO3 are consistent with EXAFS spectra. Using these complexes, we developed a surface complexation model for U on goethite with a 1-pK model for surface protonation, an extended Stern model for surface electrostatics and inclusion of all known UO2-OH-CO3 aqueous complexes in the current thermodynamic database. The model gives an excellent fit to our sorption experiments done in both ambient and reduced CO2 environments at surface loadings of 0.02-2.0 wt% U.  相似文献   
186.
Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using both the traditional two-region approach and the “supercell” method. The traditional two-region approach has been used to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied, the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on a curve, similar to those previously observed for cations with different charges, but with much lower curvature.The “supercell” method has been used to investigate the pressure dependence of noble gas incorporation in the same systems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, explicit simulation of incorporation at the (0 0 1) surface of MgO shows that the solubility of the heavier noble gases may be considerably enhanced by the presence of interfaces.  相似文献   
187.
Earth’s core may contain C, and it has been suggested that C in the core could stabilize the formation of a solid inner core composed of Fe3C. We experimentally examined the Fe-C system at a pressure of 5 GPa and determined the Fe-C phase diagram at this pressure. In addition, we measured solid metal/liquid metal partition coefficients for 17 trace elements and examined the partitioning behavior between Fe3C and liquid metal for 14 trace elements. Solid metal/liquid metal partition coefficients are similar to those found in one atmosphere studies, indicating that the effect of pressure to 5 GPa is negligible. All measured Fe3C/liquid metal partition coefficients investigated are less than one, such that all trace elements prefer the C-rich liquid to Fe3C. Fe3C/liquid metal partition coefficients tend to decrease with decreasing atomic radii within a given period. Of particular interest, our 5 GPa Fe-C phase diagram does not show any evidence that the Fe-Fe3C eutectic composition shifts to lower C contents with increasing pressure, which is central to the previous reasoning that the inner core may be composed of Fe3C.  相似文献   
188.
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction.  相似文献   
189.
Variations in sulfur mineralogy and chemistry of serpentinized peridotites and gabbros beneath the Lost City Hydrothermal Field at the southern face of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were examined to better understand serpentinization and alteration processes and to study fluid fluxes, redox conditions, and the influence of microbial activity in this active, peridotite-hosted hydrothermal system. The serpentinized peridotites are characterized by low total sulfur contents and high bulk δ34S values close to seawater composition. Low concentrations of 34S-enriched sulfide phases and the predominance of sulfate with seawater-like δ34S values indicate oxidation, loss of sulfide minerals and incorporation of seawater sulfate into the serpentinites. The predominance of pyrite in both serpentinites and gabbros indicates relatively high fO2 conditions during progressive serpentinization and alteration, which likely result from high fluid fluxes during hydrothermal circulation and evolution of the Lost City system from temperatures of ∼250 to 150 °C. Sulfate and sulfide minerals in samples from near the base of hydrothermal carbonate towers at Lost City show δ34S values that reflect the influence of microbial activity. Our study highlights the variations in sulfur chemistry of serpentinized peridotites in different marine environments and the influence of long-lived, moderate temperature peridotite-hosted hydrothermal system and high seawater fluxes on the global sulfur cycle.  相似文献   
190.
In-situ uplifted portions of oceanic crust at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were drilled during Expeditions 304 and 305 of the Integrated Ocean Drilling Program (IODP) and a 1.4 km section of predominantly gabbroic rocks with minor intercalated ultramafic rocks were recovered. Here we characterize variations in sulfur mineralogy and geochemistry of selected samples of serpentinized peridotites, olivine-rich troctolites and diverse gabbroic rocks recovered from Hole 1309D. These data are used to constrain alteration processes and redox conditions and are compared with the basement rocks of the southern wall of the Atlantis Massif, which hosts the Lost City Hydrothermal Field, 5 km to the south. The oceanic crust at the central dome is characterized by Ni-rich sulfides reflecting reducing conditions and limited seawater circulation. During uplift and exhumation, seawater interaction in gabbroic-dominated domains was limited, as indicated by homogeneous mantle-like sulfur contents and isotope compositions of gabbroic rocks and olivine-rich troctolites. Local variations from mantle compositions are related to magmatic variability or to interaction with seawater-derived fluids channeled along fault zones. The concomitant occurrence of mackinawite in olivine-rich troctolites and an anhydrite vein in a gabbro provide temperature constraints of 150-200 °C for late circulating fluids along local brittle faults below 700 m depth. In contrast, the ultramafic lithologies at the central dome represent domains with higher seawater fluxes and higher degrees of alteration and show distinct changes in sulfur geochemistry. The serpentinites in the upper part of the hole are characterized by high total sulfide contents, high δ34Ssulfide values and low δ34Ssulfate values, which reflect a multistage history primarily controlled by seawater-gabbro interaction and subsequent serpentinization. The basement rocks at the central dome record lower oxygen fugacities and more limited fluid fluxes compared with the serpentinites and gabbros of the Lost City hydrothermal system. Our studies are consistent with previous results and indicate that sulfur speciation and sulfur isotope compositions of altered oceanic mantle sequences commonly evolve over time. Heterogeneities in sulfur geochemistry reflect the fact that serpentinites are highly sensitive to local variations in fluid fluxes, temperature, oxygen and sulfur fugacities, and microbial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号