首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   10篇
  国内免费   4篇
测绘学   11篇
大气科学   31篇
地球物理   91篇
地质学   78篇
海洋学   21篇
天文学   53篇
自然地理   30篇
  2022年   2篇
  2021年   3篇
  2020年   10篇
  2019年   9篇
  2018年   10篇
  2017年   10篇
  2016年   14篇
  2015年   15篇
  2014年   9篇
  2013年   17篇
  2012年   5篇
  2011年   25篇
  2010年   13篇
  2009年   17篇
  2008年   30篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1993年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   7篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
181.
A tephrostratigraphy for Erebus volcano is presented, including tephra composition, stratigraphy, and eruption mechanism. Tephra from Erebus were collected from glacial ice and firn. Scanning electron microscope images of the ash morphologies help determine their eruption mechanisms The tephra resulted mainly from phreatomagmatic eruptions with fewer from Strombolian eruptions. Tephra having mixed phreatomagmatic–Strombolian origins are common. Two tephra deposited on the East Antarctic ice sheet, ~ 200 km from Erebus, resulted from Plinian and phreatomagmatic eruptions. Glass droplets in some tephra indicate that these shards were produced in both phreatomagmatic and Strombolian eruptions. A budding ash morphology results from small spheres quenched during the process of hydrodynamically splitting off from a parent melt globule. Clustered and rare single xenocrystic analcime crystals, undifferentiated zeolites, and clay are likely accidental clasts entrained from a hydrothermal system present prior to eruption. The phonolite compositions of glass shards confirm Erebus volcano as the eruptive source. The glasses show subtle trends in composition, which correlate with stratigraphic position. Trace element analyses of bulk tephra samples show slight differences that reflect varying feldspar contents.  相似文献   
182.
Measurements of surface velocity, ice deformation (at 42 and 89% ice depth) and proglacial stream discharge were made at Haut Glacier d'Arolla, Switzerland, to determine diurnal patterns of variation in each. Data are analysed in order to understand better the relationship between hydraulically induced basal motion and glacier ice deformation over short timescales. The data suggest that hydraulically induced localized basal ‘slippery’ spots are created over diurnal cycles, causing enhanced basal motion and spatially variable glacier speed‐up. Our data indicate that daily glacier speed‐up is associated with reduced internal deformation over areas previously identified as slippery spots and increased deformation in areas located adjacent to or down‐glacier from slippery spots. We interpret this pattern in terms of a transfer of mechanical support for basal shear stress away from slippery spots to adjacent sticky areas, where the resulting stronger ice–bed coupling causes increased ice deformation near the bed. These patterns indicate that basal ice is subjected to stress regimes that are variable at a high spatial and temporal resolution. Such variations may be central to the creation of anomalous vertical velocity profiles measured above and down‐glacier of basal slippery zones, which have shown evidence for ‘plug flow’ and extrusion flow over annual timescales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
183.
The monitoring of bedload flux under flash flood conditions has been successfully achieved since 1992 using slot samplers in the semiarid Nahal Eshtemoa. In the present study, a surrogate bedload monitoring technique - the Japanese plate microphone - has been deployed and calibrated against data from the slot samplers. Since a slot sampler has a sensitivity threshold that becomes especially important when transport rates are low, different averaging periods should be considered for high and low fluxes. In order to overcome the deficiencies of time-based aggregation used hitherto, we have developed a new method involving mass aggregation and commensurably variable intervals, thereby enabling a more accurate analysis and optimizing the bedload sampler's capabilities. The data derived with this new method has then been utilized to calibrate the Japanese plate microphone. The Eshtemoa is an ephemeral gravel bed channel with a high proportion of fine gravel (< 0.02 m); for these conditions, acoustic sensors have not been calibrated as yet. Two multiple linear regression models incorporating the effect of median bedload grain size on pulse rate have been established to predict bedload flux and cumulative transported bedload mass. The coefficients in these models are statistically significant. Good predictions are obtained for bedload flux (adj. r2 = 0.83) and for cumulative bedload mass (adj. r2 = 0.98) during flood recession. Overall, the multiple linear regression models, used in conjunction with the mass aggregation method of estimating bedload flux, suggest that field calibration of acoustic devices is feasible under these conditions for ca. 90% of the duration of bedload transport. © 2020 John Wiley & Sons, Ltd.  相似文献   
184.
A novel approach for the exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral and sectorial spherical harmonics is presented in this work. It is shown that the exact solution for the Delaunay normalization can be reduced to quadratures by the application of Deprit’s Lie-transform-based perturbation method. Two different series representations of the quadratures, one in powers of the eccentricity and the other in powers of the ratio of the Earth’s angular velocity to the satellite’s mean motion, are derived. The latter series representation produces expressions for the short-period variations that are similar to those obtained from the conventional method of relegation. Alternatively, the quadratures can be evaluated numerically, resulting in more compact expressions for the short-period variations that are valid for an elliptic orbit with an arbitrary value of the eccentricity. Using the proposed methodology for the Delaunay normalization, generalized expressions for the short-period variations of the equinoctial orbital elements, valid for an arbitrary tesseral or sectorial harmonic, are derived. The result is a compact unified artificial satellite theory for the sub-synchronous and super-synchronous orbit regimes, which is nonsingular for the resonant orbits, and is closed-form in the eccentricity as well. The accuracy of the proposed theory is validated by comparison with numerical orbit propagations.  相似文献   
185.
The Glasford structure in Illinois (USA) was recognized as a buried impact crater in the early 1960s but has never been reassessed in light of recent advances in planetary science. Here, we document shatter cones and previously unknown quartz microdeformation features that support an impact origin for the Glasford structure. We identify the 4 km wide structure as a complex buried impact crater and describe syn‐ and postimpact deposits from its annular trough. We have informally designated these deposits as the Kingston Mines unit (KM). The fossils and sedimentology of the KM indicate a marine depositional setting. The various intervals within the KM constitute a succession of breccia, carbonate, sandstone, and shale similar to marine sedimentary successions preserved in other craters. Graptolite specimens retrieved from the KM place the time of deposition at approximately 455 ± 2 Ma (Late Ordovician, Sandbian). This age determination suggests a possible link between the Glasford impact and the Ordovician meteorite shower, an increase in the rate of terrestrial meteorite impacts attributed to the breakup of the L‐chondrite parent body in the main asteroid belt.  相似文献   
186.
An efficient method for inferring Manning’s n coefficients using water surface elevation data was presented in Sraj et al. (Ocean Modell 83:82–97 2014a) focusing on a test case based on data collected during the Tōhoku earthquake and tsunami. Polynomial chaos (PC) expansions were used to build an inexpensive surrogate for the numerical model GeoClaw, which were then used to perform a sensitivity analysis in addition to the inversion. In this paper, a new analysis is performed with the goal of inferring the fault slip distribution of the Tōhoku earthquake using a similar problem setup. The same approach to constructing the PC surrogate did not lead to a converging expansion; however, an alternative approach based on basis pursuit denoising was found to be suitable. Our result shows that the fault slip distribution can be inferred using water surface elevation data whereas the inferred values minimize the error between observations and the numerical model. The numerical approach and the resulting inversion are presented in this work.  相似文献   
187.
188.
Preface     
  相似文献   
189.
A basin axial-channel belt was largely responsible for the observed distribution of coarse-grained gravity-flow deposits in the Tertiary Puchkirchen and basal Hall formations of the Molasse foreland basin in Upper Austria. Elements of this depositional system, mapped in three-dimensional (3D) seismic-reflection data, include channel-belt thalweg, mass-transport complexes, overbank wedge, overbank lobe, and tributary channel. The primary objective of this paper is to develop a comprehensive understanding of the sedimentary processes that were prevalent in the channel-belt complex through the analysis of well data, including drill cores and wireline logs, in conjunction with 3D seismic interpretations.  相似文献   
190.
We employ an integrated subsurface dataset, including >400 m of drill cores and three-dimensional (3D) seismic-reflection data from >530 km2 of the Tertiary Molasse foreland basin system in Austria, to characterize turbidite-system architecture across structurally complex foredeep-margin and wedge-top depocenters and to interpret the influence of tectonic deformation and submarine topography on hydrocarbon-reservoir quality and distribution. Turbidite-system architecture and depositional processes were correlated with associated topographic features in order to identify zones of preferential sediment gravity-flow convergence or divergence. Zones of flow convergence facilitate flow acceleration and accumulative flow behavior, whereas zones of flow divergence facilitate deceleration and depletion. Zones of preferential flow convergence include narrow (<2 km) and steep (<20°) foredeep-margin slope channels along thrust front-segmenting tear faults, and steep, unchannelized piggyback-basin and foredeep margins (local gradients as great as 40° across piggyback-basin margins). The foredeep-margin gradient is exaggerated principally by tectonic deformation that post-dates turbidite-system development, based on a paucity of growth strata. Piggyback-basin-margin gradients are exaggerated as a result of deformation synchronous with and following turbidite-system development, judging from the presence of growth strata. Slope-channel topography facilitated the development of relatively coarse-grained, amalgamated turbidite reservoirs, whereas unchannelized basin-margin topography facilitated deposition of fine-grained, chaotic non-reservoirs. Zones of preferential flow divergence are flat (<1°), unconfined (i.e., large in comparison to sediment gravity flows) piggyback-basin floors, which facilitated the development of relatively coarse-grained, non-amalgamated, upward fining turbidite reservoirs, stratigraphically partitioned by fine-grained mass transport-complex deposits. The results of this study elucidate the influence of foredeep-margin and wedge-top tectonic deformation and topography on turbidite-system and associated reservoir character and distribution across the Molasse foreland basin system in Austria, and can be applied to oil and gas exploration in analogous, structurally complex settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号