首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   7篇
地球物理   22篇
地质学   6篇
天文学   1篇
自然地理   10篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2003年   1篇
  1998年   1篇
  1971年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
11.
Small island developing states (or SIDS) are exposed to a large number of natural hazards and many characteristics of small island developing states make them particularly vulnerable to the impacts of natural hazards. In spite of this acknowledged vulnerability, there are relatively few studies which focus on the impacts of natural hazards in these countries. This paper presents a review of our current state of knowledge of impacts in small island developing states and highlights a number of research needs. Central to these is the need to integrate natural hazards research within a sustainable development context and the need to exploit existing procedures such as government coordinated disaster impact assessments to generate a detailed understanding of natural hazards impacts.  相似文献   
12.
Petrological, volcanological and geochronological data collected at Mathews Tuya together provide constraints on paleoclimate conditions during formation of the edifice. The basaltic tuya was produced via Pleistocene glaciovolcanism in northern British Columbia, Canada, and is located within the Tuya volcanic field (59.195°N/130.434°W), which is part of the northern Cordilleran volcanic province (NCVP). The edifice comprises a variety of lithofacies, including columnar-jointed lava, pillow lava, massive dikes, and volcaniclastic rocks. Collectively these deposits record the transition from an explosive subaqueous to an effusive subaerial eruption environment dominated by Pleistocene ice. As is typical for tuyas, the volcaniclastic facies record multiple fragmentation processes including explosive, quench and mechanical fragmentation. All samples from Mathews Tuya are olivine-plagioclase porphyritic alkali olivine basalts. They are mineralogically and geochemically similar to nearby glaciovolcanic centers from the southeastern part of the Tuya volcanic field (e.g., Ash Mountain, South Tuya, Tuya Butte) as well as the dominant NCVP rock type. Crystallization scenarios calculated with MELTS account for variations between whole rock and glass compositions via low pressure fractionation. The presence of olivine microphenocrysts and the absence of pyroxene phenocrysts constrain initial crystallization pressures to less than 0.6 GPa. The eruption of Mathews Tuya occurred between 0.718 ± 0.054 Ma and 0.742 ± 0.081 Ma based on 40Ar/39Ar geochronology (weighted mean age of 0.730 Ma). The age determinations provide the first firm documentation for large (>700 m thick), pre-Fraser/Wisconsin glaciers in north-central British Columbia ~0.730 Ma, and correlate in age with glaciovolcanic deposits in Russia (e.g., Komatsu et al. Geomorph 88: 352-366, 2007) and with marine isotopic evidence for large global ice volumes ~0.730 Ma.  相似文献   
13.
The downstream distribution of stream power is derived and analysed for 11 different streams in the upper Hunter River catchment, Australia. Stream long profiles were produced in a GIS environment using DEM data and catchment area–discharge analysis. These profiles were analysed using three approaches, namely long profile smoothing, curve fitting and a theoretical model. The methodology for deriving stream power profiles using these three approaches is discussed. The long profile smoothing method provides a good approximation of the subcatchment variability in stream power trends. The curve fitting method shows that higher-order exponential curves provide a better fit for long profile data. For the streams of the upper Hunter River catchment, second-order exponential curves fit well with significantly less error. The curve fitting method predicts a bimodal (upstream and midstream) distribution of stream power, which is a deviation from our earlier understanding of a single midstream peak. The theoretical approach provides a mathematical expression of the observed bimodal stream power distribution. The bimodal distribution emphasises the erosion potential of headwater reaches. The resultant stream power distribution provides a catchment-scale characterisation of the distribution of available energy in any given system. Using these approaches, the variability of stream power in headwater reaches is explained by discharge variability, while variability in midstream and downstream reaches is related to high variability in channel gradient.  相似文献   
14.
Rivers act as ‘jerky conveyor belts’ that transmit fluxes of flow and sediment downstream. This transmission of fluxes can be highly variable within a drainage basin resulting in either abrupt or gradational sediment (dis)connectivity patterns and processes. This study assesses sediment (dis)connectivity across a basin as a means to understand the locational, transmission and filter sensitivity properties of a fluvial system. Drawing upon the case study of Richmond River Catchment, New South Wales, Australia we use the concepts of effective catchment area and buffers, along with graph theory and an empirical sediment transport model CASCADE (Catchment Sediment Connectivity and Delivery), to assess (1) the degree to which modelled sediment cascades along the river network are connected or disconnected (2) how the position, pattern and configuration of (dis)connection facilitates or restricts geomorphic adjustment in different parts of a catchment, and (3) use the findings as a basis to explain the locational-transmission-filter sensitivity of the catchment. We use this analysis to segregate supply limited and transport limited reaches and identify various controls on sediment dynamics: in-stream sediment storage units, junctions between different geomorphic river types, tributary confluences and sediment storage units within partly confined floodplain units. Such analysis lays the foundation for network scale identification of potential hotspots of geomorphic adjustment.  相似文献   
15.
The concept of the sediment delivery problem was introduced into the literature in 1983 by Des Walling. This concept describes how only a fraction of sediment eroded within a catchment will reach the basin outlet and be represented as sediment yield, and that sediment storage mechanisms operating within a catchment explain this discrepancy. Since this paper was published, geomorphologists have been examining in great detail the fate of sediment eroded from the landsurface, and the pathways and timeframes of sediment transport and storage in catchments. However, to fully understand the internal dynamics of sediment flux requires a ‘fresh look at the sediment delivery problem’. A framework is required that can incorporate the various processes involved in sediment movement from source areas through a basin to its outlet, and can take account of the spatial distribution of, and timeframes over which, these processes operate. This paper presents a conceptual framework for analysis of catchment (dis)connectivity that incorporates both spatial and temporal variability in the operation of the sediment cascade. This approach examines where blockages occur to disrupt these longitudinal, lateral and vertical linkages in catchments. Depending on the position of blockages (termed buffers, barriers and blankets), and their sediment residence time, various parts of a catchment may be actively contributing sediment to the sediment cascade and be switched on, or inactive and switched off. This paper discusses how such a framework can be used to model response times to disturbance and explain the manifestation of geomorphic change in catchments. The paper then highlights challenges geomorphologists face in applying such a framework to understand the internal dynamics of the catchment sediment cascades, and forecast how environmental change might affect the operation of sediment fluxes into the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
16.
While many studies have documented pathways of river degradation, few studies have assessed the character, capacity, and stages of river recovery. In this paper, a generic procedure to measure river recovery is developed and applied in Bega catchment, on the south coast of New South Wales (NSW), Australia. The approach is based on analysis of geomorphic units and ergodic reasoning. Historical data and field analyses are used to identify stages of river evolution throughout Bega catchment. From this, stages of river condition and pathways of adjustment are assessed for three river styles at different positions within the catchment. Five categories of river condition are identified. Intact reaches operate in a self-adjusting manner, whereby processes maintain the pre-disturbance geomorphic character of the reach. The processes occurring in restoration reaches maintain and enhance the geomorphic structure of the reach. These reaches are moderately resilient to change. The river has experienced degradation, but has recovered to a condition approximating its pre-disturbance character and behavior. Degraded reaches are still adjusting to disturbance and the processes of recovery have not yet begun. The river is experiencing progressive deterioration away from the structure and function of the pre-disturbance condition. Turning-point reaches are at the transitional stage where they can either recover or revert to a degraded state. Finally, a creation reach has a self-adjusting character and behavior but operates under altered catchment boundary conditions. The character and behavior of the river do not equate to pre-disturbance conditions; rather, the river is well adjusted to the prevailing catchment boundary conditions of water and sediment transfer, and vegetation cover and composition (among many factors). Once these conditions have been identified for each river style, all reaches in a catchment are placed on pathways of degradation and recovery, and predictions made about their direction of change. The three river styles analyzed in Bega catchment demonstrate differing recovery pathways. Some reaches are adjusting toward a restored condition, while others are adjusting toward a new (or creation) condition. The geomorphic recovery potential of each reach is determined by assessing the connectivity of reaches throughout the catchment and interpreting limiting factors to recovery (e.g., water and sediment transfer, vegetation and coarse woody debris [CWD] character and distribution). [Key words: geomorphic river condition, river recovery, river degradation, recovery potential, fluvial geomorphology, river management.]  相似文献   
17.
Most analyses of river adjustment have focused on parts of catchments where metamorphosis has occurred. This provides a non‐representative view of river responses to human‐disturbance. Although many rivers have been subjected to systematic land‐use change and disturbance, significant variability is evident in the form, extent and consequences of adjustment. This study documents the catchment‐wide distribution of river sensitivity and adjustment in the upper Hunter catchment, New South Wales, Australia in the period since European settlement. The spatial distribution and timing of lateral, vertical and wholesale river adjustments are used to assess river sensitivity to change. The type and pattern of rivers, influenced largely by valley setting, have induced a fragmented pattern of river adjustment in the upper Hunter catchment. Adjustments have been largely non‐uniform and localized, reflecting the predominance of bedrock‐controlled rivers which have limited capacity to adjust and are resilient to change. Less than 20% of river courses have experienced metamorphosis. Phases of reach‐scale geomorphic adjustment to human disturbance are characterized as a gradient of primary, secondary and tertiary responses. In general terms, primary responses such as cutoffs or straightening were followed by secondary responses such as channel expansion. These secondary responses occurred between 50–70 years after initial disturbance. A subsequent tertiary phase of river recovery, denoted as a transition from predominantly erosional to predominantly depositional geomorphic processes such as channel contraction, occurred around 70–120 years after initial disturbance. Such responses are ongoing across much of the upper Hunter catchment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
18.
The low-grade base metal sulphide Cu–Zn–Pb and Fe mineralization of Qandil Series develop in shear zones that occur in formations of the north-western part of the Zagros Orogen. This sulphide mineralization occurs either as quartz vein type or disseminated type associated with metamorphic rocks (marbles and phyllites). This study aims to characterize these sulphide-rich ores by means of their mineralogical and geochemical features, including also the features of the corresponded host formations and those of marbles (calcitic and dolomitic) and phyllites. Petrographical data indicate the presence of Cu, Zn, Pb and Fe sulphides in hydrothermal quartz (±calcite) veins of different generations. Geochemical data of surface samples indicate enrichment of Cu and Fe in shear zones with low concentrations in Zn and Pb. The REE data indicate that the genesis of these sulphide ores took place in a hydrothermal system and was generally attributed to high temperature (> 250 °C).The mineralization seems to be fault-controlled, which is favoured by the significant tectonic deformation of the area.  相似文献   
19.
Extensive valley fills at the base of the escarpment in upper Wolumla Creek, on the south coast of New South Wales, Australia, have formed from a combination of ‘cut and fill’ processes. The valley fills comprise series of alternating, horizontally bedded sand and mud units, reflecting reworking of detritus from deeply weathered granites of the Bega Batholith. Sand units are deposited as sand sheets or splays on floodplain surfaces or in floodouts that form atop intact valley fill surfaces downstream of discontinuous gullies. Alternatively, sands are deposited from bedload and form bars or part of the valley floor within channel fills. Organic-rich mud units are deposited from suspension in swamps or in seepage zones at the distal margin of floodouts. Within 5 km of the escarpment, valley deposits grade downstream from sand sheet and splay deposition in floodouts, to mud deposition in swamp and seepage zones. Radiocarbon dates indicate that virtually the entire valley fill of upper Wolumla Creek was excavated prior to 6000 years BP . Remnant terraces are evident at valley margins. The valley subsequently filled between 6000 years BP and 1000 years BP producing valley fills around 12 m deep, but no greater than 300 m wide. Reincision into the valley fill, on a scale smaller than the present incision phase, is indicated at around 1000 years BP , following which the channel refilled. Portion plans dated from 1865 refer to the study area as ‘Wolumla Big Flat’, and show large areas of swampy terrain, suggesting that the valley fill had re-established by this time. Within a few decades of European settlement the valley fill incised once more. Upper Wolumla Creek now has a channel over 10 m deep and 100 m wide in places, draining a catchment area of less than 20 km2. © 1998 John Wiley & Sons, Ltd.  相似文献   
20.
The worldwide availability of digital elevation models (DEMs) has enabled rapid (semi-)automated mapping of earth surface landforms. In this paper, we first present an approach for delineating valley bottom extent across a large catchment using only publicly available, coarse-resolution DEM input. We assess the sensitivity of our results to variable DEM resolution and find that coarse-resolution datasets (90 m resolution) provide superior results. We also find that LiDAR-derived DEMs produce more realistic results than satellite-derived DEMs across the full range of topographic settings tested. Satellite-derived DEMs perform more effectively in moderate topographic settings, but fail to capture the subtleties of valley bottom extent in mild gradient, low-lying topography and in narrow headwater reaches. Second, we present a semi-automated technique within ArcGIS for delineating valley bottom segments using DEM-derived network scale metrics of valley bottom width and slope. We use an unsupervised machine-learning technique based on the k-means clustering algorithm to solve a conundrum in GIS-based geomorphic analysis of rivers: the delineation of valley bottom segments of variable length. The delineation of valley bottom segments provides a coarse-scale entry point into automated geomorphic analysis and characterization of river systems. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号