首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38029篇
  免费   628篇
  国内免费   601篇
测绘学   958篇
大气科学   3180篇
地球物理   7653篇
地质学   12532篇
海洋学   3456篇
天文学   8834篇
综合类   128篇
自然地理   2517篇
  2021年   214篇
  2020年   279篇
  2019年   284篇
  2018年   641篇
  2017年   611篇
  2016年   912篇
  2015年   654篇
  2014年   890篇
  2013年   1951篇
  2012年   1066篇
  2011年   1510篇
  2010年   1244篇
  2009年   1847篇
  2008年   1632篇
  2007年   1548篇
  2006年   1454篇
  2005年   1321篇
  2004年   1250篇
  2003年   1199篇
  2002年   1113篇
  2001年   993篇
  2000年   1003篇
  1999年   934篇
  1998年   845篇
  1997年   859篇
  1996年   733篇
  1995年   663篇
  1994年   574篇
  1993年   524篇
  1992年   517篇
  1991年   488篇
  1990年   483篇
  1989年   423篇
  1988年   408篇
  1987年   454篇
  1986年   436篇
  1985年   528篇
  1984年   588篇
  1983年   566篇
  1982年   524篇
  1981年   467篇
  1980年   438篇
  1979年   403篇
  1978年   415篇
  1977年   360篇
  1976年   328篇
  1975年   337篇
  1974年   337篇
  1973年   339篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
The hydroelastic responses of a very-long floating structure (VLFS) placed behind a reverse T-shape freely floating breakwater with a built-in oscillating water column (OWC) chamber are analyzed in two dimensions. The Bernoulli–Euler beam equation is coupled with the equations of rigid and elastic motions of the breakwater and the VLFS. The interaction of waves between the floating rigid breakwater and the elastic VLFS is formulated in a consistent manner. It has been shown numerically that the structural deflections of the VLFS can be reduced significantly by a suitably designed reverse T-shape floating breakwater.  相似文献   
992.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   
993.
This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific, the oceanic region centered on the eastern Pacific warm pool, but also including the equatorial cold tongue and equatorial current system, and summarizes what is known about oceanographic influences on seabirds and cetaceans there. The eastern tropical Pacific supports on the order of 50 species of seabirds and 30 species of cetaceans as regular residents; these include four endemic species, the world’s largest populations for several others, three endemic sub-species, and a multi-species community that is relatively unique to this ecosystem. Three of the meso-scale physical features of the region are particularly significant to seabirds and cetaceans: the Costa Rica Dome for blue whales and short-beaked common dolphins, the Equatorial Front for planktivorous seabirds, and the countercurrent thermocline ridge for flocking seabirds that associate with mixed-species schools of spotted and spinner dolphins and yellowfin tuna. A few qualitative studies of meso- to macro-scale distribution patterns have indicated that some seabirds and cetaceans have species-specific preferences for surface currents. More common are associations with distinct water masses; these relationships have been quantified for a number of species using several different analytical methods. The mechanisms underlying tropical species–habitat relationships are not well understood, in contrast to a number of higher-latitude systems. This may be due to the fact that physical variables have been used as proxies for prey abundance and distribution in species–habitat research in the eastern tropical Pacific.Though seasonal and interannual patterns tend to be complex, species–habitat relationships appear to remain relatively stable over time, and distribution patterns co-vary with patterns of preferred habitat for a number of species. The interactions between seasonal and interannual variation in oceanographic conditions with seasonal patterns in the biology of seabirds and cetaceans may account for some of the complexity in species–habitat relationship patterns.Little work has been done to investigate effects of El Niño-Southern Oscillation cycles on cetaceans, and results of the few studies focusing on oceanic seabirds are complex and not easy to interpret. Although much has been made of the detrimental effects of El Niño events on apex predators, more research is needed to understand the magnitude, and even direction, of these effects on seabirds and cetaceans in space and time.  相似文献   
994.
The construction of reservoir models is frustrated by the fact that core and well cover only a fraction of the reservoir volume and it is therefore difficult to determine features like facies shape, -size, and -distribution, inter- and intra-facies boundaries and lateral trends from them. These features are, however, critical to fluid flow and they should necessarily be incorporated in the reservoir model and we therefore propose to systematically describe geometry and distribution of facies. To this end we make use of “standard facies models” that a priori contain all elements and boundaries of facies for a number of typical depositional environments.  相似文献   
995.
Sediment samples ranging from 0.05 to 278 m below sea floor (mbsf) at a Northwest Pacific deep-water (5564 mbsl) site (ODP Leg 191, Site 1179) were analyzed for phospholipid fatty acids (PLFAs). Total PLFA concentrations decreased by a factor of three over the first meter of sediment and then decreased at a slower rate to approximately 30 mbsf. The sharp decrease over the first meter corresponds to the depth of nitrate and Mn(IV) reduction as indicated by pore water chemistry. PLFA-based cell numbers at site 1179 had a similar depth profile as that for Acridine orange direct cell counts previously made on ODP site 1149 sediments which have a similar water depth and lithology. The mole percentage of straight chain saturated PLFAs increases with depth, with a large shift between the 0.95 and 3.95 mbsf samples. PLFA stable carbon isotope ratios were determined for sediments from 0.05 to 4.53 mbsf and showed a general trend toward more depleted δ13C values with depth. Both of these observations may indicate a shift in the bacterial community with depth across the different redox zones inferred from pore water chemistry data. The PLFA 10me16:0, which has been attributed to the bacterial genera Desulfobacter in many marine sediments, showed the greatest isotopic depletion, decreasing from − 20 to − 35‰ over the first meter of sediment. Pore water chemistry suggested that sulfate reduction was absent or minimal over this same sediment interval. However, 10me16:0 has been shown to be produced by recently discovered anaerobic ammonium oxidizing (anammox) bacteria which are known chemoautotrophs. The increasing depletion in δ13C of 10me16:0 with the unusually lower concentration of ammonium and linear decrease of nitrate concentration is consistent with a scenario of anammox bacteria mediating the oxidation of ammonium via nitrite, an intermediate of nitrate reduction.  相似文献   
996.
Dissolved and particulate samples were collected to study the distribution of thorium isotopes (234Th, 232Th and 230Th) in the water column of the Indian sector of the Southern Ocean (from 42°S to 47°S and from 60°E to 66°E, north of the Polar Front) during Austral summer 1999. Vertical profiles of excess 230Th (230Thxs) increases linearly with depth in surface water (0–100 m) and a model was applied to estimate a residence time relative to the thorium scavenging (τscav). Low τscav in the Polar Front Zone (PFZ) are found, compared to those estimated in the Subtropical Front Zone (STZ). Changes in particle composition between the PFZ and STZ could influence the 230Thxs scavenging efficiency and explain this difference. An innovative coupling between 234Th and 230Thxs was then used to simultaneously constrain the settling velocities of small (0.6–60 μm) and large (above 60 μm) particles. Although the different hydrological and biogeochemical regimes visited during the ANTARES IV cruise did not explain the spatial variation of sinking velocity estimates, our results indicate that less particles may reach the seafloor north (60 ± 2 m d− 1, station 8) than south of the Agulhas Return Current (119 ± 23 and 130 ± 5 m d− 1 at stations 3 and 7, respectively). This information is essential for understanding particle transport and by extension, carbon export. In the deep water column, the 230Thxs concentrations did not increase linearly with depth, probably due to lateral transport of North Atlantic Deep Water (NADW) from the Atlantic to the Indian sector, which renews the deep waters and decreases the 230Thxs concentrations. A specific 230Thxs transport model is applied in the deep water column and allows us to assess a “travel time” of NADW ranging from 2 to 15 years.  相似文献   
997.
The short-time-scale variability of the remineralization patterns in the domain of Eastern North Atlantic Central Waters (ENACW) off the NW Iberian Peninsula is studied based on biogeochemical data (oxygen, nutrient salts, total alkalinity, pH, dissolved organic matter and fluorescence of dissolved humic substances) collected weekly between May 2001 and April 2002. The temporal variability of inorganic variables points to an intensification of remineralization during the summer and autumn, with an increase of nutrients, total inorganic carbon and fluorescence and a decrease of oxygen. During the subsequent winter mixing, there is a biogeochemical reset of the system, with lower nutrients, total inorganic carbon and fluorescence and higher oxygen. In contrast to inorganic variables, the levels of dissolved organic matter in the ENACW seem to respond to short-term events probably associated with fast sinking particles, where solubilisation of organic matter prevails over remineralization. Applying a previously published stoichiometric model, we observed a vertical fractionation of organic-matter remineralization. Although there is a preferential remineralization of proteins and P compounds in the entire domain of ENACW, the percentage was higher in the upper ENACW (σ<27.10 kg/m3) than in the lower; the percentage of N and P compounds in the oxidised organic matter was >80% for the upper ENACW and 63% for the lower. Likewise, the redissolution of calcareous structures contributes about 6% and 13% to the carbon regenerated in the upper and lower layers of ENACW, respectively.  相似文献   
998.
Wet atmospheric deposition of dissolved N, P and Si species is studied in well-mixed coastal ecosystem to evaluate its potential to stimulate photosynthetic activities in nutrient-depleted conditions. Our results show that, during spring, seawater is greatly depleted in major nutrients: Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP) and Silicic acid (Si), in parallel with an increase of phytoplanktonic biomass. In spring (March–May) and summer (June–September), wet atmospheric deposition is the predominant source (>60%, relative to riverine contribution) for nitrates and ammonium inputs to this N-limited coastal ecosystem. During winter (October–February), riverine inputs of DIN predominate (>80%) and are annually the most important source of DIP (>90%). This situation allows us to calculate the possibility for a significant contribution to primary production in May 2003, from atmospheric deposition (total input for DIN ≈300 kg km−2 month−1). Based on usual Redfield ratios and assuming that all of the atmospheric-derived N (AD-N) in rainwater is bioavailable for phytoplankton growth, we can estimate new production due to AD-N of 950 mg C m−2 month−1, during this period of depletion in the water column. During the same episode (May 2003), photosynthetic activity rate, considered as gross primary production, was estimated to approximately 30 300 mg C m−2 month−1. Calculation indicates that new photosynthetic activity due to wet atmospheric inputs of nitrogen could be up to 3%.  相似文献   
999.
Benthic macroalgae form an important part of temperate marine ecosystems, exhibiting a complex three-dimensional character which represents a vital foraging and spawning ground for many juvenile fish species. In this research, image-based techniques for classification of multibeam backscatter are explored for the detection of benthic macroalgae at Cashes Ledge in the Gulf of Maine, USA. Two classifications were performed using QTC-Multiview, differentiated by application of a threshold filter, and macroalgal signatures were independently extracted from the raw sonar datagrams in Matlab. All classifications were validated by comparison with video ground-truth data. The unfiltered classification shows a high degree of complexity in the shallowest areas within the study site; the filtered demonstrates markedly less variation by depth. The unfiltered classification shows a positive agreement with the video ground-truth data; 82.6% of observations recording Laminaria sp., 39.1% of Agarum cribrosum and 100.0% (n = 3) of mixed macroalgae occur within the same acoustically distinct group of classes. These are discrete from the 8.1% recorded agreement with absences and nulls (>40 m) of macrophytes (n = 32) from a total of 86 ground-truth locations. The results of the water column data extraction (WCDE) show similar success, accurately predicting 78.3% of Laminaria sp. and 30.4% of A. cribrosum observations.  相似文献   
1000.
Monthly investment in soma and gonads in the bivalve Scrobicularia plana is described for three populations along its distributional range: Minho estuary, Portugal; Westerschelde estuary, The Netherlands and Buvika estuary, Norway. Seasonal cycles in body mass (BMI), somatic mass (SMI) and gonadal mass (GMI) indices were observed for all populations. In Portugal, BMI and SMI peaked in mid-autumn, while in The Netherlands both indices were at their highest in mid-spring. Norway showed a different pattern with two distinct peaks: one in mid-autumn and a second peak in spring. GMI reached maximum values in July in Portugal and Netherlands and in June in Norway. Overall, mean BMI and SMI were lower in Portugal while mean GMI was lower in Norway. The spawning period lasted the whole summer in Portugal, but was shorter (only two months) in The Netherlands and Norway. The reproductive investment in The Netherlands was significantly higher than in Portugal and Norway, with the lowest values being observed in Norway. Differences in annual cycles between populations were attributed to environmental factors, namely temperature and food availability. Temperature seems important in shaping the reproductive pattern with more northern populations showing shorter reproductive periods starting later in the year, and a lower reproductive output. In addition, winter water temperatures can explain the lower mean body and somatic mass values observed in Portugal. Food availability influenced the physiological performance of the species with peaks in somatic mass coinciding with phytoplankton blooms. This relation between physiological performance and environmental factors influences S. plana distribution, densities and even survival, with natural consequences on its commercial importance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号