首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   54篇
  国内免费   22篇
测绘学   25篇
大气科学   132篇
地球物理   280篇
地质学   360篇
海洋学   107篇
天文学   174篇
综合类   9篇
自然地理   101篇
  2024年   4篇
  2023年   8篇
  2022年   8篇
  2021年   17篇
  2020年   26篇
  2019年   30篇
  2018年   34篇
  2017年   49篇
  2016年   36篇
  2015年   37篇
  2014年   47篇
  2013年   73篇
  2012年   38篇
  2011年   69篇
  2010年   56篇
  2009年   79篇
  2008年   68篇
  2007年   61篇
  2006年   56篇
  2005年   39篇
  2004年   43篇
  2003年   34篇
  2002年   24篇
  2001年   19篇
  2000年   24篇
  1999年   18篇
  1998年   15篇
  1997年   19篇
  1996年   17篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1967年   1篇
排序方式: 共有1188条查询结果,搜索用时 218 毫秒
941.
Model studies do not agree on future changes in tropical cyclone (TC) activity on regional scales. We aim to shed further light on the distribution, frequency, intensity, and seasonality of TCs that society can expect at the end of the twenty-first century in the Southern hemisphere (SH). Therefore, we investigate TC changes simulated by the atmospheric model ECHAM5 with T213 (~60 km) horizontal resolution. We identify TCs in present-day (20C; 1969–1990) and future (21C; 2069–2100) time slice simulations, using a tracking algorithm based on vorticity at 850 hPa. In contrast to the Northern hemisphere (NH), where tropical storm numbers reduce by 6 %, there is a more dramatic 22 % reduction in the SH, mainly in the South Indian Ocean. While an increase of static stability in 21C may partly explain the reduction in tropical storm numbers, stabilization cannot alone explain the larger SH drop. Large-scale circulation changes associated with a weakening of the Tropical Walker Circulation are hypothesized to cause the strong decrease of cyclones in the South Indian Ocean. In contrast the decrease found over the South Pacific appears to be partly related to increased vertical wind shear, which is possibly associated with an enhanced meridional sea surface temperature gradient. We find the main difference between the hemispheres in changes of the tropical cyclones of intermediate strength with an increase in the NH and a decrease in the SH. In both hemispheres the frequency of the strongest storms increases and the frequency of the weakest storms decreases, although the increase in SH intense storms is marginal.  相似文献   
942.
Concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in nearshore marine surficial sediments from three locations in Trinidad. Sediments were sampled at Sea Lots on the west coast, in south Port-of-Spain Harbor, south of Sea Lots at Caroni Lagoon National Park, and on Trinidad’s east coast at Manzanilla. Total PCB concentrations in Sea Lots sediments ranged from 62 to 601 ng/g (dry weight {dw}), which was higher than at Caroni and Manzanilla, 13 and 8 ng/g dw, respectively. Total OCP concentrations at Sea Lots were ranged from 44.5 to 145 ng/g dw, compared with 13.1 and 23.8 n/g (dw), for Caroni and Manzanilla respectively. The concentrations of PCBs and of some OCPs in sediments from Sea Lots were above the Canadian interim sediment quality guidelines. To date, this data is the first report on the levels of PCBs and other organochlorine compounds from Trinidad and Tobago.  相似文献   
943.
A series of model experiments with the coupled Max-Planck-Institute ECHAM5/OM climate model have been investigated and compared with microwave measurements from the Microwave Sounding Unit (MSU) and re-analysis data for the period 1979?C2008. The evaluation is carried out by computing the Temperature in the Lower Troposphere (TLT) and Temperature in the Middle Troposphere (TMT) using the MSU weights from both University of Alabama (UAH) and Remote Sensing Systems (RSS) and restricting the study to primarily the tropical oceans. When forced by analysed sea surface temperature the model reproduces accurately the time-evolution of the mean outgoing tropospheric microwave radiation especially over tropical oceans but with a minor bias towards higher temperatures in the upper troposphere. The latest reanalyses data from the 25?year Japanese re-analysis (JRA25) and European Center for Medium Range Weather Forecasts Interim Reanalysis are in very close agreement with the time-evolution of the MSU data with a correlation of 0.98 and 0.96, respectively. The re-analysis trends are similar to the trends obtained from UAH but smaller than the trends from RSS. Comparison of TLT, computed from observations from UAH and RSS, with Sea Surface Temperature indicates that RSS has a warm bias after 1993. In order to identify the significance of the tropospheric linear temperature trends we determined the natural variability of 30-year trends from a 500?year control integration of the coupled ECHAM5 model. The model exhibits natural unforced variations of the 30?year tropospheric trend that vary within ±0.2?K/decade for the tropical oceans. This general result is supported by similar results from the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model. Present MSU observations from UAH for the period 1979?C2008 are well within this range but RSS is close to the upper positive limit of this variability. We have also compared the trend of the vertical lapse rate over the tropical oceans assuming that the difference between TLT and TMT is an approximate measure of the lapse rate. The TLT?CTMT trend is larger in both the measurements and in the JRA25 than in the model runs by 0.04?C0.06?K/decade. Furthermore, a calculation of all 30?year TLT?CTMT trends of the unforced 500-year integration vary between ±0.03?K/decade suggesting that the models have a minor systematic warm bias in the upper troposphere.  相似文献   
944.
Groundwater-dependent ecosystems are often defined by the presence of deeply rooted phreatophytic plants. When connected to groundwater, phreatophytes in arid regions decouple ecosystem net primary productivity from precipitation, underscoring a disproportionately high biodiversity and exchange of resources relative to surrounding areas. However, groundwater-dependent ecosystems are widely threatened due to the effects of water diversions, groundwater abstraction, and higher frequencies of episodic drought and heat waves. The resilience of these ecosystems to shifting ecohydrological–climatological conditions will depend largely on the capacity of dominant, phreatophytic plants to cope with dramatic reductions in water availability and increases in atmospheric water demand. This paper disentangles the broad range of hydraulic traits expressed by phreatophytic vegetation to better understand their capacity to survive or even thrive under shifting ecohydrological conditions. We focus on three elements of plant water relations: (a) hydraulic architecture (including root area to leaf area ratios and rooting depth), (b) xylem structure and function, and (c) stomatal regulation. We place the expression of these traits across a continuum of phreatophytic habits from obligate to semi-obligate to semi-facultative to facultative. Although many species occupy multiple phreatophytic niches depending on access to groundwater, we anticipate that populations are largely locally adapted to a narrow range of ecohydrological conditions regardless of gene flow across ecohydrological gradients. Consequently, we hypothesize that reductions in available groundwater and increases in atmospheric water demand will result in either (a) stand replacement of obligate phreatophytic species with more facultative species as a function of widespread mortality in highly groundwater-dependent populations or (b) directional selection in semi-obligate and semi-facultative phreatophytes towards the expression of traits associated with highly facultative phreatophytes in the absence of species replacement. Anticipated shifts in the expression of hydraulic traits may have profound impacts on water cycling processes, species assemblages, and habitat structure of groundwater-dependent woodlands and riparian forests.  相似文献   
945.
This issue of Hydrological Processes is dedicated to Dr. Edward P. Glenn, a frequent contributor to the journal, who suddenly passed away in late 2017. The articles within this volume are by a number of his former co-authors and others who have been greatly influenced by his professional work on hydrological processes.  相似文献   
946.
ABSTRACT

The temporal nature of humans interaction with Points of Interest (POIs) in cities can differ depending on place type and regional location. Times when many people are likely to visit restaurants (place type) in Italy, may differ from times when many people are likely to visit restaurants in Lebanon (i.e. regional differences). Geosocial data are a powerful resource to model these temporal differences in cities, as traditional methods used to study cross-cultural differences do not scale to a global level. As cities continue to grow in population and economic development, research identifying the social and geophysical (e.g., climate) factors that influence city function remains important and incomplete. In this work, we take a quantitative approach, applying dynamic time warping and hierarchical clustering on temporal signatures to model geosocial temporal patterns for Retail and Restaurant Facebook POIs hours of operation for more than 100 cities in 90 countries around the world. Results show cities’ temporal patterns cluster to reflect the cultural region they represent. Furthermore, temporal patterns are influenced by a mix of social and geophysical factors. Trends in the data suggest social factors influence unique drops in temporal signatures, and geophysical factors influence when daily temporal patterns start and finish.  相似文献   
947.
Wildfires can impact streamflow by modifying net precipitation, infiltration, evapotranspiration, snowmelt, and hillslope run‐off pathways. Regional differences in fire trends and postwildfire streamflow responses across the conterminous United States have spurred concerns about the impact on streamflow in forests that serve as water resource areas. This is notably the case for the Western United States, where fire activity and burn severity have increased in conjunction with climate change and increased forest density due to human fire suppression. In this review, we discuss the effects of wildfire on hydrological processes with a special focus on regional differences in postwildfire streamflow responses in forests. Postwildfire peak flows and annual water yields are generally higher in regions with a Mediterranean or semi‐arid climate (Southern California and the Southwest) compared to the highlands (Rocky Mountains and the Pacific Northwest), where fire‐induced changes in hydraulic connectivity along the hillslope results in the delivery of more water, more rapidly to streams. No clear streamflow response patterns have been identified in the humid subtropical Southeastern United States, where most fires are prescribed fires with a low burn severity, and more research is needed in that region. Improved assessment of postwildfire streamflow relies on quantitative spatial knowledge of landscape variables such as prestorm soil moisture, burn severity and correlations with soil surface sealing, water repellency, and ash deposition. The latest studies furthermore emphasize that understanding the effects of hydrological processes on postwildfire dynamic hydraulic connectivity, notably at the hillslope and watershed scales, and the relationship between overlapping disturbances including those other than wildfire is necessary for the development of risk assessment tools.  相似文献   
948.
Small catchments have served as sentinels of forest ecosystem responses to changes in air quality and climate. The Hubbard Brook Experimental Forest in New Hampshire has been tracking catchment water budgets and their controls – meteorology and vegetation – since 1956. Water budgets in four reference catchments indicated an approximately 30% increase in the evapotranspiration (ET) as estimated by the difference between precipitation (P) and runoff (RO) starting in 2010 and continuing through 2019. We analyzed the annual water budgets, cumulative deviations of the daily P, RO and water budget residual (WBR = P − RO), potential ET (PET) and indicators of subsurface storage to gain greater insight into this shift in the water budgets. The PET and the subsurface storage indicators suggest that this change in WBR was primarily due to increasing ET. While multiple long-term hydrological and micrometeorological data sets were used to detect and investigate this change in ET, additional measurements of groundwater storage and soil moisture would enable better estimation of ET within the catchment water balance. Increasing the breadth of long-term measurements across small gauged catchments allows them to serve as more effective sentinels of substantial hydrologic changes like the ET increase that we observed.  相似文献   
949.
The processes that control run‐off quantity and quality in urban watersheds are complex and not well understood. Although impervious surface coverage has traditionally been used to examine altered hydrologic response in urban watersheds, several studies suggest that other elements of the urban landscape, particularly those associated with urban infrastructure and the drainage system, play an equally important role. The relative importance of impervious surfaces, stormwater ponds, expansion of the drainage network, and drainage network structures in controlling hydrologic response was examined in the subwatersheds of the Kromma Kill, an urban watershed located in Albany County, NY. In this study, geographic information systems was used to compute geospatial land surface and drainage network properties of 5 Kromma Kill subwatersheds. In these same subwatersheds, water quantity (rainfall and run‐off) and quality (macroinvertebrates, nitrate, total nitrogen, dissolved oxygen, total dissolved solids, and nonpurgable organic carbon) parameters were measured. Strong and significant correlations were identified between land surface and drainage network properties and field observations. Causal relationships were then tested using the Environmental Protection Agency's Stormwater Management Model. Field and model analyses suggest that whereas percent imperviousness is a dominant control on water quality, drainage density and slope are equally important. However, for water quantity, whereas imperviousness is positively correlated with increased run‐off volumes, drainage network properties and slope are the dominant controls on run‐off volumes. Results have important implications for stormwater management plans, especially those aimed at reducing the effective impervious surface coverage of urban watersheds. Reducing the percentage of effective imperviousness in a watershed is not a “one size fits all” solution and can help to meet some management objectives, such as reducing nitrogen concentrations and improving water quality, but may not serve as the most effective, and therefore economical, solution for every management objective including reducing run‐off volumes.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号