首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   7篇
地球物理   23篇
地质学   43篇
海洋学   5篇
天文学   23篇
自然地理   9篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   10篇
  2009年   10篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
91.
Vector magnetic field synoptic charts from the Helioseismic and Magnetic Imager (HMI) are now available for each Carrington Rotation (CR) starting from CR 2097 in May 2010. Synoptic charts are produced using 720-second cadence full-disk vector magnetograms remapped to Carrington coordinates. The vector field is derived from the Stokes parameters (\(I, Q, U, V\)) using a Milne–Eddington-based inversion model. The \(180^{\circ}\) azimuth ambiguity is resolved using the minimum energy algorithm for pixels in active regions and for strong-field pixels (the field is greater than about 150 G) in quiet-Sun regions. Three other methods are used for the rest of the pixels: the potential-field method, the radial acute-angle method, and the random method. The vector field synoptic charts computed using these three disambiguation methods are evaluated. The noise in the three components of the vector magnetic field is generally much higher in the potential-field method charts. The component noise levels are significantly different in the radial-acute charts. However, the noise levels in the random-method charts are lower and comparable. The assumptions used in the potential-field and radial-acute methods to disambiguate the weak transverse field introduce bias that propagates differently into the three vector-field components, leading to unreasonable pattern and artifacts, whereas the random method appears not to introduce any systematic bias. The current sheet on the source surface, computed using the potential-field source-surface model applied to random-method charts, agrees with the best solution (the result computed from the synoptic charts with the minimum energy algorithm applied to each and every pixel in the vector magnetograms) much better than the other two. Differences in the synoptic charts determined with the best method and the random method are much smaller than those from the best method and the other two. This comparison indicates that the random method is better for vector field synoptic maps computed from near-central meridian data. The vector field synoptic charts provided by the Joint Science Operations Center (JSOC) are therefore produced with the random method.  相似文献   
92.
We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995?–?2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\)?–?\(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\)?–?\(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).  相似文献   
93.
Samples of polyethylene pellets were collected at 30 beaches from 17 countries and analyzed for organochlorine compounds. PCB concentrations in the pellets were highest on US coasts, followed by western Europe and Japan, and were lower in tropical Asia, southern Africa and Australia. This spatial pattern reflected regional differences in the usage of PCBs and was positively correlated with data from Mussel Watch, another monitoring approach. DDTs showed high concentrations on the US west coast and in Vietnam. In Vietnam, DDT was predominant over its metabolites (DDE and DDD), suggesting the principal source may be current usage of the pesticide for malaria control. High concentrations of pesticide HCHs were detected in the pellets from southern Africa, suggesting current usage of the pesticides in southern Africa. This study demonstrates the utility and feasibility of the International Pellet Watch approach to monitor POPs at a global scale.  相似文献   
94.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   
95.
96.
Anthropogenic global warming will lead to changes in the global hydrological cycle. The uncertainty in precipitation sensitivity per 1 K of global warming across coupled atmosphere-ocean general circulation models (AOGCMs) has been actively examined. On the other hand, the uncertainty in precipitation sensitivity in different emission scenarios of greenhouse gases (GHGs) and aerosols has received little attention. Here we show a robust emission-scenario dependency (ESD); smaller global precipitation sensitivities occur in higher GHG and aerosol emission scenarios. Although previous studies have applied this ESD to the multi-AOGCM mean, our surprising finding is that current AOGCMs all have the common ESD in the same direction. Different aerosol emissions lead to this ESD. The implications of the ESD of precipitation sensitivity extend far beyond climate analyses. As we show, the ESD potentially propagates into considerable biases in impact assessments of the hydrological cycle via a widely used technique, so-called pattern scaling. Since pattern scaling is essential to conducting parallel analyses across climate, impact, adaptation and mitigation scenarios in the next report from the Intergovernmental Panel on Climate Change, more attention should be paid to the ESD of precipitation sensitivity.  相似文献   
97.
We studied the petrology and mineralogy of two types of shock-melted H chondrites: Yamato (Y)–791088 and LaPaz Ice Field (LAP) 02240. Y–791088, which consists of numerous coarse-grained relict phases (40%) and euhedral fine-grained minerals solidified from the shock melt (60%), experienced incomplete melting; a quiescent melt is indicated by the existence of abundant relict phases, pseudomorphed chondrules, and two types of glass. LAP 02240, which consists of small amounts of coarse-grained relict phases (~10%) and fine-grained minerals (~90%), experienced near-complete melting; a rapidly cooled mobilized melt is indicated by the homogeneous compositions of glass and opaque veins.The homogeneous compositions of relict olivines indicate that the precursors of both chondrites were equilibrated H chondrites. The melting features of Y–791088 and LAP 02240 are very similar to those of Y–790964 (LL) and the fine-grained lithology of Y–790519 (LL), respectively. These two types of shock-melted ordinary chondrites possibly formed in situ during dike formation. The quiescent melt is thought to have originated from the injection of shock-heated chondrite blocks into mobilized melt. These two types of melting could have occurred during dike formation on the H chondrite parent body. The textures of the two types of shock melts were not simply affected by the degree of shock melting: they were also controlled by the degree of shear stress.  相似文献   
98.
Mineralogy and geochemistry of modern shallow sediments (up to 5 m thick) within the zone of water table fluctuations were studied to determine the likely sources and processes responsible for releasing As into groundwater. Samples were collected from different geological settings with varying groundwater As concentrations during dry (December 2005) and wet (September 2006) seasons at Sonargaon, Bangladesh. Stratigraphic sequences of the studied sediments showed three distinct lithofacies, viz. clayey-silt, silty-clay, and silty-very fine sand, corresponding to fine-grained overbank associations. Total As concentrations of shallow sediments ranged from <1 to 16 mg/kg without a significant difference in the range of As concentrations between the seasons. Sequential chemical extraction analysis of As revealed that >80% of the As was fixed in insoluble and organic phases, while the amount of As in reducible and acid-soluble phases was very low (<20%) and varied inversely with total As content. Total As concentration varied with mica content (muscovite and biotite) and its related elements (Al, Mg and Fe), but not with total organic C, suggesting that biotite is the major host phase of As. Arsenic appears to be liberated from biotite and/or other As-bearing minerals via chemical weathering (i.e., hydration-decomposition), either from the near-surface sediments which are subject to seasonal cycling of the redox conditions, or from within the aquifer sediments. Once released, progressive diagenesis to form As-bearing organic matter may be responsible for controlling As distribution in the sediments and coexisting groundwater of the study area.  相似文献   
99.
In this paper, we investigate spatial variations in soil CO2 efflux and carbon dynamics across five sites located between 65.5°N and 69.0°N in tundra and boreal forest biomes of Alaska. Growing and winter mean CO2 effluxes for the period 2006–2010 were 261 ± 124 (Coefficients of Variation: 48%) and 71 ± 42 (CV: 59%) gCO2/m2, respectively. This indicates that winter CO2 efflux contributed 24% of the annual CO2 efflux over the period of measurement. In tundra and boreal biomes, tussock is an important source of carbon efflux to the atmosphere, and contributes 3.4 times more than other vegetation types. To ensure that representativeness of soil CO2 efflux was determined, 36 sample points were used at each site during the growing season, so that the experimental mean fell within ±20% of the full sample mean at 80% and 90% confidence levels. We found that soil CO2 efflux was directly proportional to the seasonal mean soil temperature, but inversely proportional to the seasonal mean soil moisture level, rather than to the elevation-corrected July air temperature. This suggests that the seasonal mean soil temperature is the dominant control on the latitudinal distribution of soil CO2 efflux in the high-latitude ecosystems of Alaska.  相似文献   
100.
We present Hα observations from ARIES (Nainital) of a compact and impulsive solar flare that occurred on March 10, 2001 and which was associated with a CME. We have also analyzed HXT, SXT/Yohkoh observations as well as radio observations from the Nobeyama Radio Observatory to derive the energetics and dynamics of this impulsive flare. We coalign the Hα, SXR, HXR, MW, and magnetogram images within the instrumental spatial-resolution limit. We detect a single HXR source in this flare, which is found spatially associated with one of the Hα bright kernels. The unusual feature of HXR and Hα sources, observed for the first time, is the rotation during the impulsive phase in a clockwise direction. We propose that the rotation may be due to asymmetric progress of the magnetic reconnection site or may be due to the change of the peak point of the electric field. In MW emission we found two sources. The main source is at the main flare site and another is in the southwest direction. It appears that the remote source is formed by the impact of accelerated energetic electrons from the main flare site. From the spatial correlation of multiwavelength images of the different sources, we conclude that this flare has a three-legged structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号