首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1122篇
  免费   33篇
  国内免费   3篇
测绘学   18篇
大气科学   96篇
地球物理   286篇
地质学   313篇
海洋学   119篇
天文学   164篇
综合类   4篇
自然地理   158篇
  2021年   9篇
  2020年   12篇
  2019年   10篇
  2018年   30篇
  2017年   17篇
  2016年   24篇
  2015年   17篇
  2014年   23篇
  2013年   49篇
  2012年   43篇
  2011年   55篇
  2010年   38篇
  2009年   41篇
  2008年   52篇
  2007年   44篇
  2006年   38篇
  2005年   43篇
  2004年   31篇
  2003年   32篇
  2002年   42篇
  2001年   24篇
  2000年   24篇
  1999年   18篇
  1998年   19篇
  1997年   18篇
  1996年   11篇
  1995年   18篇
  1994年   13篇
  1993年   21篇
  1992年   14篇
  1991年   7篇
  1990年   15篇
  1989年   12篇
  1988年   10篇
  1987年   14篇
  1986年   18篇
  1985年   20篇
  1984年   17篇
  1983年   29篇
  1982年   22篇
  1981年   10篇
  1980年   20篇
  1979年   16篇
  1978年   23篇
  1977年   13篇
  1976年   16篇
  1975年   7篇
  1974年   11篇
  1973年   12篇
  1971年   6篇
排序方式: 共有1158条查询结果,搜索用时 437 毫秒
21.
The formation of incised valleys on continental shelves is generally attributed to fluvial erosion under low sea level conditions. However, there are exceptions. A multibeam sonar survey at the northern end of Australia's Great Barrier Reef, adjacent to the southern edge of the Gulf of Papua, mapped a shelf valley system up to 220 m deep that extends for more than 90 km across the continental shelf. This is the deepest shelf valley yet found in the Great Barrier Reef and is well below the maximum depth of fluvial incision that could have occurred under a − 120 m, eustatic sea level low-stand, as what occurred on this margin during the last ice age. These valleys appear to have formed by a combination of reef growth and tidal current scour, probably in relation to a sea level at around 30–50 m below its present position.

Tidally incised depressions in the valley floor exhibit closed bathymetric contours at both ends. Valley floor sediments are mainly calcareous muddy, gravelly sand on the middle shelf, giving way to well-sorted, gravely sand containing a large relict fraction on the outer shelf. The valley extends between broad platform reefs and framework coral growth, which accumulated through the late Quaternary, coincides with tidal current scour to produce steep-sided (locally vertical) valley walls. The deepest segments of the valley were probably the sites of lakes during the last ice age, when Torres Strait formed an emergent land-bridge between Australia and Papua New Guinea. Numerical modeling predicts that the strongest tidal currents occur over the deepest, outer-shelf segment of the valley when sea level is about 40–50 m below its present position. These results are consistent with a Pleistocene age and relict origin of the valley.

Based on these observations, we propose a new conceptual model for the formation of tidally incised shelf valleys. Tidal erosion on meso- to macro-tidal, rimmed carbonate shelves is enhanced during sea level rise and fall when a tidal, hydraulic pressure gradient is established between the shelf-lagoon and the adjacent ocean basin. Tidal flows attain a maximum, and channel incision is greatest, when a large hydraulic pressure gradient coincides with small channel cross sections. Our tidal-incision model may explain the observation of other workers, that sediment is exported from the Great Barrier Reef shelf to the adjacent ocean basins during intermediate (rather than last glacial maximum) low-stand, sea level positions. The model may apply to other rimmed shelves, both modern and ancient.  相似文献   

22.
23.
Overwash is a major controlling factor in the morphology of the mixing zone of coastal aquifers. Conceptual models of the mixing zone describe an interface controlled by tidal oscillations, wave run-up, and other factors; however, few describe the influence of large storm events. In August 1993, Hatteras Island, North Carolina, USA, experienced a 3-m storm surge due to Hurricane Emily. Sound-side flooding infiltrated a wellfield, causing a dramatic increase in TDS levels that persisted for more than 3 years. Two-dimensional simulations with SUTRA, the USGS finite-element model, are calibrated to the TDS breakthrough data of this storm to infer model dispersivity values. Simulations using the calibrated dispersivity values, predicted flooding levels, and 54 years of hurricane records to determine the influence of the overwash events suggest that it is rare for the mixing zone to approximate the conceptual morphology. Even during quiescent periods such as between 1965 and 1975, TDS levels do not return to theoretical levels before being elevated by a subsequent storm event. Thus, while tidal oscillations and other factors are important to mixing zone development, basic wind events and more severe storm events may have more influence and lasting effect on the morphology of the mixing zone.  相似文献   
24.
Kay L. Booth 《GeoJournal》1993,29(3):299-305
Since the turn of the century, recreation has grown as a motivating force in public land administration. Today, the Department of Conservation manages approximately one third of New Zealand's outdoor recreation resources and has the mandate to foster the use of natural and historic resources for recreation, and to allow their use for tourism (Conservation Act 1987:8). This paper traces the emergence of a recreation perspective within public land administration and examines the development of a recreation philosophy and policy within the Department of Conservation. It suggests future directions for outdoor recreation management in New Zealand.  相似文献   
25.
Post-depositional mobility of137Cs,239+240Pu and210Pb was assessed in six small lake basins by comparing sedimentary nuclide profiles with their known fallout history. Laminae couplets, when present, were determined to be varves because the137Cs and239+240Pu 1963 fallout peaks are present in laminae couplets corresponding to years 1962–1964. There is no evidence of mobility of210Pb, because 1) mass accumulation rates based on210Pb agree with those based on137Cs and239+240Pu peak depths and with those based on varve counts, and 2)210Pb ages agree with varve ages. Significant mobility of137Cs is evident from the penetration of137Cs to depths 15–20 cm deeper than239+240Pu. Deep penetration of137Cs in spite of a sharp gradient below the peak is interpreted by a numerical model to suggest that137Cs is present in two distinct forms in these sediments, 67–82% as an immobile form and 18–33% reversibly adsorbed with a K d of approximately 5000. The profiles can be interpreted equally well assuming a small portionof the total137Cs was present as an extremely mobile phase (K d 5000) in the months to years following peak fallout, slowly becoming more strongly adsorbed. High NH 4 + concentrations in porewaters may enhance diffusion of the mobile form of137Cs, but not of the immobile form of137Cs that defines the sharp gradient. Mobility of137Cs is likely also enhanced by the low clay content and the high porosity of these sediments. Thus the first detection of137Cs in the sediments cannot automatically be assumed to correspond to a date of 1952 (initial testing of thermonuclear weapons), although the depth of the peak can be assumed to correspond to 1963 (the year of maximum fallout from testing of thermonuclear weapons).239+240Pu is a more reliable sediment chronometer than137Cs because it is significantly less mobile.This is the sixth of a series of papers to be published by this journal following the 20 th anniversary of the first application of210Pb dating of lake sediments. Dr P.G. Appleby is guest editing this series.  相似文献   
26.
The observed density of Venus is about 2% smaller than would be expected if Venus were a twin planet of the Earth, possessing an identical internal composition and structure. In principle, this could be explained by a process of physical segregation of metal particles from silicate particles in the solar nebula prior to accretion, so that Venus accreted from relatively metal-depleted material. However, this model encounters severe difficulties in explaining the nature of the physical segregation process and also the detailed chemical composition of the Earth's mantle. Two alternative hypotheses are examined, both of which attempt to explain the density difference in terms of chemical fractionation processes. Both of these hypotheses assume that the relative abundances of the major elements Fe, Si, Mg, Al, and Ca are similar in both planets. According to the first hypothesis, a larger proportion of the total iron in Venus is present as iron oxide in the mantle, so that the core-to-mantle ratio is smaller than in the Earth. This model implies that Venus is more oxidized than the Earth, with its lower intrinsic density (i.e., corrected to equivalent pressures and temperatures) due to the larger amount of oxygen present. The difference between oxidation states is attributed to differing degrees of accretional heating arising from the relatively smaller mass of Venus. On the other hand, the second hypothesis maintains that Venus is more reduced than the Earth, with its mantle essentially devoid of oxidized iron. The difference intrinsic densities is attributed to the Earth accreting at a lower temperature than Venus as a result of the Earth's greater distance from the center of the nebula. As a result, large amounts of sulfur accreted on the Earth but not on Venus. The sulfur, which entered the core, is believed to have increased the mean density of the Earth because of its relatively high atomic weight. The hypothesis also implies that most of the Earth's potassium, because of its chalcophile properties, entered the core.These hypotheses are evaluated in the light of existing data. The second hypothesis leads to an intrinsic density for Venus which is only 0.4% smaller than that of the Earth. This difference is much smaller than is believed to exist. A wide range of chemical evidence is found to be unfavorable to this second hypothesis, but to be consistent with the interpretation that Venus is more oxidized than the Earth, as required by the first hypothesis.  相似文献   
27.
A cool period from about 11000 to 10 500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of meltwater presence (a — 3 per mil shift in 18O and a +1.1 per mil shift in 13C), increased sand, and reduced detrital calcite content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Algonquin during the first eastward discharge of glacial Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that the cold extra inflow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance.Contribution to Climo Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate ProgramGeological Survey of Canada Contribution 58 890  相似文献   
28.
Petrologic studies of tephra from Kanaga, Adak, and Great Sitkin Islands indicate that amphibole fractionation and magma mixing are important processes controlling the composition of calc-alkaline andesite and dacite magmas in the central Aleutians. Amphibole is ubiquitous in tephra from Kanaga and Adak Islands, whereas it is present only in a basaltic-andesite pumice from Great Sitkin. Dacitic tephra from Great Sitkin do not contain amphibole. Hornblende dacite tephra contain HB+PLAG+OX±OPX±CPX phenocrysts with simple zoning patterns, suggesting that the dacites evolved in isolated magma chambers. Andesitic tephra from Adak contain two pyroxene and hornbelende populations, and reversely zoned plagioclase, indicating a more complex history involving mixing and fractional crystallization. Mass balance calculations suggest that the andesitic tephra may represent the complements of amphibole-bearing cumulate xenoliths, both formed during the evolution of high-Al basalts. The presence of amphibole in andesitic and dacitic tephra implies that Aleutian cale-alkaline magmas evolve in the mid to lower crust under hydrous (>4 wt.% H2O) and oxidizing (Ni–NiO) conditions. Amphibole-bearing andesites and pyroxene-bearing dacites from Great Sitkin indicates fractionation at several levels within the arc crust. Despite its absence in many calc-alkaline andesite and dacite lavas, open system behavior involving amphibole fractionation can explain the trace element characteristies of lavas found on Adak Island. Neither open nor closed system fractionation involving a pyroxene-bearing assemblage is capable of explaining the trace element concentrations or ratios found in the Adak suite. We envision a scenario where amphibole was initially a liquidus phase in many calc-alkaline magmas, but was later replaced by pyroxenes as the magmas rose to shallow levels within the crust. The mineral assemblage in these evolved lavas reflects shallow level equilibration of the magma, whereas the trace element chemistry provides evidence for a earlier, amphibole-bearing, mineral assemblage.  相似文献   
29.
A large amount of interest has recently been expressed pertaining to the quantity of physically adsorbed water by the Martian regolith. Thermodynamic calculations based on experimentally determined adsorption and desorption isotherms and extrapolated to subzero temperatures indicate that physical adsorption of more than one or two monomolecular layers is highly unlikely under Martian conditions. Any additional water would find ice to be the state of lowest energy and therefore the most stable form. To test the validity of the thermodynamic calculations we have measured adsorption and desorption isotherms of sodium montmorillonite at ?5°C. To a first approximation it was found to be valid.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号