首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1122篇
  免费   33篇
  国内免费   3篇
测绘学   18篇
大气科学   96篇
地球物理   286篇
地质学   313篇
海洋学   119篇
天文学   164篇
综合类   4篇
自然地理   158篇
  2021年   9篇
  2020年   12篇
  2019年   10篇
  2018年   30篇
  2017年   17篇
  2016年   24篇
  2015年   17篇
  2014年   23篇
  2013年   49篇
  2012年   43篇
  2011年   55篇
  2010年   38篇
  2009年   41篇
  2008年   52篇
  2007年   44篇
  2006年   38篇
  2005年   43篇
  2004年   31篇
  2003年   32篇
  2002年   42篇
  2001年   24篇
  2000年   24篇
  1999年   18篇
  1998年   19篇
  1997年   18篇
  1996年   11篇
  1995年   18篇
  1994年   13篇
  1993年   21篇
  1992年   14篇
  1991年   7篇
  1990年   15篇
  1989年   12篇
  1988年   10篇
  1987年   14篇
  1986年   18篇
  1985年   20篇
  1984年   17篇
  1983年   29篇
  1982年   22篇
  1981年   10篇
  1980年   20篇
  1979年   16篇
  1978年   23篇
  1977年   13篇
  1976年   16篇
  1975年   7篇
  1974年   11篇
  1973年   12篇
  1971年   6篇
排序方式: 共有1158条查询结果,搜索用时 406 毫秒
101.
Europa's surface is chemically altered by radiolysis from energetic charged particle bombardment. It has been suggested that hydrated sulfuric acid (H2SO4·nH2O) is a major surface species and is part of a radiolytic sulfur cycle, where a dynamic equilibrium exists between continuous production and destruction of sulfur polymers Sx, sulfur dioxide SO2, hydrogen sulfide H2S, and H2SO4·nH2O. We measured the rate of sulfate anion production for cyclo-octal sulfur grains in frozen water at temperatures, energies, and dose rates appropriate for Europa using energetic electrons. The measured rate is GMixture(SO42−)=fSulfur (r0/r)βG1 molecules (100 eV)−1, where fSulfur is the sulfur weight fraction, r is the grain radius, r0=50 μm, β≈1.9, and G1=0.4±0.1. Equilibrium column densities N are derived for Europa's surface and follow the ordering N(H2SO4) » N(S)>N(SO2)>N(H2S). The lifetime of a sulfur atom on Europa's surface for radiolysis to H2SO4 is τ(−S)=120(r/r0)β years. Rapid radiolytic processing hides the identity of the original source of the sulfurous material, but Iogenic plasma ion implantation and an acidic or salty ocean are candidate sources. Sulfate salts, if present, would be decomposed in <3800 years and be rapidly assimilated into the sulfur cycle.  相似文献   
102.
103.
An overview of toxicant identification in sediments and dredged materials   总被引:1,自引:0,他引:1  
The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation's waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. Knowledge of which contaminants affect benthic systems allows managers to link pollution to specific dischargers and prevent further release of toxicant(s). In addition, identification of major causes of toxicity in sediments may guide programs such as those developing environmental sediment guidelines and registering pesticides, while knowledge of the causes of toxicity which drive ecological changes such as shifts in benthic community structure would be useful in performing ecological risk assessments. To this end, the US Environmental Protection Agency has developed tools (toxicity identification and evaluation (TIE) methods) that allow investigators to characterize and identify chemicals causing acute toxicity in sediments and dredged materials. To date, most sediment TIEs have been performed on interstitial waters. Preliminary evidence from the use of interstitial water TIEs reveals certain patterns in causes of sediment toxicity. First, among all sediments tested, there is no one predominant cause of toxicity; metals, organics, and ammonia play approximately equal roles in causing toxicity. Second, within a single sediment there are multiple causes of toxicity detected; not just one chemical class is active. Third, the role of ammonia is very prominent in these interstitial waters. Finally, if sediments are divided into marine or freshwater, TIEs perforMed on interstitial waters from freshwater sediments indicate a variety of toxicants in fairly equal proportions, while TIEs performed on interstitial waters from marine sediments have identified only ammonia and organics as toxicants, with metals playing a minor role. Preliminary evidence from whole sediment TIEs indicates that organic compounds play a major role in the toxicity of marine sediments, with almost no evidence for either metal or ammonia toxicity. However, interpretation of these results may be skewed because only a small number of interstitial water (n = 13) and whole sediment (n = 5) TIEs have been completed. These trends may change as more data are collected.  相似文献   
104.
Significant gold deposits in the western Tanami region of Western Australia include deposits in the Bald Hill and Coyote areas. The ca. 1,864 Ma Bald Hill sequence of turbiditic and mafic volcanic rocks hosts the Kookaburra and Sandpiper deposits and a number of smaller prospects. The ca. 1,835 Ma turbiditic Killi Killi Formation hosts the Coyote deposit and several nearby prospects. The Kookaburra deposit forms as a saddle reef within a syncline, and the Sandpiper deposit is localized within graphitic metasedimentary rocks along a limb of an anticline. Gold in these deposits is hosted by anastomosing quartz–(–pyrite–arsenopyrite) veins within quartz–sericite schist with disseminated arsenopyrite, pyrite, and marcasite (after pyrrhotite). Based on relative timing relationships with structural elements, the auriferous veins are interpreted to have been emplaced before or during the ca. 1,835–1,825 Ma Tanami Orogeny (regional D1). Gold deposition is thought to have been caused by pressure drops associated with saddle reef formation (Kookaburra) and chemical reactions with graphitic rocks (Sandpiper). The Coyote deposit, the largest in the western Tanami region, consists of a number of ore lenses localized along the limbs of the Coyote Anticline, which formed during the Tanami Orogeny. The largest lenses are associated with the Gonzalez Fault, which is located along the steeply dipping southern limb of this fold. Gold was introduced at ca. 1,790 Ma into dilatant zones that formed in local perturbations along this fault during later reactivation (regional D5) towards the end of a period of granite emplacement. Gold is associated with quartz–chlorite–pyrite–(arsenopyrite–galena–sphalerite) veins with narrow (<?5 mm) chloritic selvages. A quartz–muscovite–biotite–K–feldspar–(tourmaline–actinolite–arsenopyrite) assemblage, which is interpreted to relate to granite emplacement, overprints the regional greenschist facies metamorphic assemblage. The mineralogical similarity between this overprinting assemblage and the vein assemblage suggests that the auriferous veins at the Coyote deposit are associated with the granite-related metamorphic–metasomatic assemblage. Gold deposition is thought to have been caused by pressure drops within dilatant zones.  相似文献   
105.
106.
A correlary of sea floor spreading is that the production rate of ocean ridge basalts exceeds that of all other volcanic rocks on the earth combined. Basalts of the ocean ridges bring with them a continuous record in space and time of the chemical characteristics of the underlying mantle. The chemical record is once removed, due to chemical fractionation during partial melting. Chemical fractionations can be evaluated by assuming that peridotite melting has proceeded to an olivine-orthopyroxene stage, in which case the ratios of a number of magmaphile elements in the extracted melt closely match the ratios in the mantle. Comparison of ocean ridge basalts and chondritic meteorites reveals systematic patterns of element fractionation, and what is probably a double depletion in some elements. The first depletion is in volatile elements and is due to high accretion temperatures of a large percentage of the earth from the solar nebula. The second depletion is in the largest, most highly charged lithophile elements (“incompatible elements”), probably because the mantle source of the basalts was melted previously, and the melt, enriched in these elements, was removed. Migration of melt relative to solid under ocean ridges and oceanic plates, element fractionation at subduction zones, and fractional melting of amphibolite in the Precambrian are possible mechanisms for depleting the mantle in incompatible elements. Ratios of transition metals in the mantle source of ocean ridge basalts are close to chondritic, and contrast to the extreme depletion of refractory siderophile elements, the reason for which remains uncertain. Variation of ocean ridge basalt chemistry along the length of the ridge has been correlated with ridge elevation. Thus chemically anomalous ridge segments up to 1000 km long appear to broadly coincide with regions of high magma production (plumes, hot spots). Basalt heterogeneity at a single location indicates mantle heterogeneity on a smaller scale. Variation of ocean ridge basalt chemistry with time has not been established, in fact, criteria for recognizing old oceanic crust in ophiolite terrains are currently under debate. The similarity of rare earth element patterns in basalt from ocean ridges, back-arc basins, some young island arcs, and some continental flood basalts illustrates the dangers of tectonic labeling by rare earth element pattern.  相似文献   
107.
A historical record of the effects of human development upon Lake Macatawa is established using geologic criteria. Significant cultural events are recognized using the pollen record, particularly ambrosia/vesiculate pollen ratios, and occurrences of detrital and chemical contaminants within the more recent sedimentary column. Detrital contaminants include such things as cinder and ash from coal burning power plants and animal hair from early tanning operations. Trace metal contaminants, frequently associated with specific industrial events, are particularly useful in establishing a modern sedimentary chronology. The impact of human activity upon Lake Macatawa is measured using fossil diatoms. The advantage of this method of environmental impact assessment is that it provides a historical perspective in which changes within an environment are related to its natural conditions.  相似文献   
108.
Self-diffusion of oxygen in a natural phlogopite mica (annite 4%) has been measured under hydrothermal conditions at 2000 bars pressure and from 500 to 800°C using water enriched in18O. Diffusional transport is dominantly parallel to the c crystallographic axis. A linear Arrhenius plot was obtained with a pre-exponential term = (1.03 ± 0.38) × 10?9cm2sec?1 a and an activation energy of 29 ± 2kcal/g-atom O. The difference in transport rate between oxygens in the OH groups and those in tetrahedral sites is small to non-existent unless the OH oxygens diffuse much more slowly than the other oxygens, which we consider unlikely. A typical phlogopite crystal, 0.2 mm thick by 1 mm across will lose radiogenic argon faster than it will exchange oxygen at temperatures above 435°C, but the reverse holds at lower temperatures if the diffusion mechanism can be extrapolated to temperatures below 500°C. Such a crystal will lose only 5% of its argon if held at 380°C for 1 m.y., but could exchange 27% of its oxygen in that time. The rate at which phlogopite will undergo deformation by diffusional creep does not appear to be controlled by oxygen diffusion.  相似文献   
109.
110.
By the method of electron reflection, we have identified seven well-defined magnetized regions in the equatorial belt of the lunar far side sampled by the Apollo 16 Particles and Fields subsatellite. Most of these surface magnetic fields lie within one basin radius from the rim of a ringed impact basin, where thick deposits of basin ejecta are observed or inferred. The strongest of the seven magnetic features is linear, at least 250 km long, and radial to the Freundlich-Sharonov basin. The apparent correlation with basin ejecta suggests some form of impact origin for the observed permanently magnetized regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号