首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
大气科学   1篇
地球物理   14篇
地质学   22篇
海洋学   15篇
天文学   11篇
自然地理   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1981年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1966年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
31.
Overpressure generation is a function of the rates of sedimentation, compaction, fluid generation from kerogen and dehydration of minerals, and most importantly the lateral distribution of permeability within a basin as this controls lateral drainage. Sedimentary basins, however, are typically highly heterogeneous with respect to primary sedimentary facies, diagenesis and tectonic development. While fluid flow models based on idealised homogeneous basins may further our understanding of the processes that influence overpressure development, the results are very sensitive to the distribution of rock properties, particularly permeability. The absolute permeability of sedimentary rocks varies from more than 1 Darcy to less than 0.01 nanodarcy (nD) (10−11 Darcy).  相似文献   
32.
Year-long time-series of temperature, salinity and velocity from 12 locations throughout the Chukchi Sea from September 1990 to October 1991 document physical transformations and significant seasonal changes in the throughflow from the Pacific to the Arctic Ocean for one year. In most of the Chukchi, the flow field responds rapidly to the local wind, with high spatial coherence over the basin scale—effectively the ocean takes on the lengthscales of the wind forcing. Although weekly transport variability is very large (ca. -2 to ), the mean flow is northwards, opposed by the mean wind (which is southward), but presumably forced by a sea-level slope between the Pacific and the Arctic, which these data suggest may have significant variability on long (order a year) timescales. The high flow variability yields a significant range of residence times for waters in the Chukchi (i.e. one to six months for half the transit) with the larger values applicable in winter.Temperature and salinity (TS) records show a strong annual cycle of freezing, salinization, freshening and warming, with sizable interannual variability. The largest seasonal variability is seen in the east, where warm, fresh waters escape from the buoyant, coastally trapped Alaskan Coastal Current into the interior Chukchi. In the west, the seasonally present Siberian Coastal Current provides a source of cold, fresh waters and a flow field less linked to the local wind. Cold, dense polynya waters are observed near Cape Lisburne and occasional upwelling events bring lower Arctic Ocean halocline waters to the head of Barrow Canyon. For about half the year, at least at depth, the entire Chukchi is condensed into a small region of TS-space at the freezing temperature, suggesting ventilation occurs to near-bottom, driven by cooling and brine rejection in autumn/winter and by storm-mixing all year.In 1990–1991, the ca. 0.8 Sv annual mean inflow through Bering Strait exits the Chukchi in four outflows—via Long Strait, Herald Valley, the Central Channel, and Barrow Canyon—each outflow being comparable (order 0.1–0.3 Sv) and showing significant changes in volume and water properties (and hence equilibrium depth in the Arctic Ocean) throughout the year. The clearest seasonal cycle in properties and flow is in Herald Valley, where the outflow is only weakly related to the local wind. In this one year, the outflows ventilate above and below (but not in) the Arctic halocline mode of 33.1 psu. A volumetric comparison with Bering Strait indicates significant cooling during transit through the Chukchi, but remarkably little change in salinity, at least in the denser waters. This suggests that, with the exception of (in this year small) polynya events, the salinity cycle in the Chukchi can be considered as being set by the input through Bering Strait and thus, since density is dominated by salinity at these temperatures, Bering Strait salinities are a reasonable predictor of ventilation of the Arctic Ocean.  相似文献   
33.
34.
This article documents a 240,000-m3 debris flow resulting from a glacial lake outburst flood in Fjærland, Western Norway, May 8, 2004. The event started when a glacial lake breached a moraine ridge. The ensuing debris flow was able to erode material along its path, increasing in volume from about 25,000 to 240,000 m3 before depositing about 3 km from its starting point. Field investigations, pre- and post-flow aerial photographs as well as airborne laser scanning (LIDAR) were used to describe and investigate the flow. The most striking and unusual feature of this case study is the very pronounced erosion and bulking. We have made a detailed study of this aspect. Erosion and entrainment is quantified and the final volume of the debris flow is determined. We also present geometrical and sedimentological features of the final deposit. Based on the Fjærland data, we suggest that a self-sustaining mechanism might partly explain the extreme growth of debris flows traversing soft terrain.  相似文献   
35.
This paper presents the first unambiguous terrestrial palaeoecological record for the late glacial “Bølling warming” in Denmark. Pollen and macrofossil stratigraphies from pre-Bølling to 10,800 cal yr BP are presented from a small kettle hole in Southwest Denmark, during which the lake basin developed from an immature stage after the deglaciation to complete infilling in the early Holocene. Results show that the recently deglaciated landscape bore a discontinuous vegetation of pioneer plants. After the Bølling warming, an open Dryas octopetala-Betula nana community developed with Helianthemum oelandicum. Subarctic species were dominant and local successions were probably delayed by relatively unstable and infertile soils. There is no indication of a climate cooling during the period corresponding to the Older Dryas, but the occurrence of several drought tolerant and steppe species indicates that the period was relatively dry. In the Allerød period the Dryas-B. nana vegetation was initially replaced by an open Salix and grass dominated vegetation and some 400 years later, the first tree birches were documented presumably occupying moist and sheltered soils while drier land remained open. In the Younger Dryas period trees disappeared and the vegetation became open again and dominated by subarctic species. Following climate warming at the Younger Dryas–Holocene transition a shrub community of Empetrum and Juniperus developed. After approximately 200 years it was replaced by birch forest. Overall, the late-glacial vegetation cover had a more open and patchy character than inferred from previous pollen studies as assessment of the vegetation succession based on macrofossil evidence is essential. The inferred general vegetation development corresponds well with results of other studies in the region. Canonical ordinations (RDA) indicate that vegetation changes at the landscape scale during the Lateglacial period were driven by changes in climate, soils and competition for light.  相似文献   
36.
Abstract

A major surface feature of the Greenland Sea during winter is the frequent eastward extension of sea ice south of 75°N and an associated embayment to the north. These features are nominally connected with the East Greenland Current, and both the promontory and the embayment are readily apparent on climatic ice charts. However, there are significant changes in these features on time‐scales as short as a few days. Using a combination of satellite microwave images (SSM/I) of ice cover, meteorological data and in situ velocity, temperature and salinity records, we relate the ice distribution and its changes to the developing structure and circulation of the upper ocean during winter 1988–1989. Our measurements illustrate the preconditioning that leads to convective overturn, which in turn brings warmer water to the surface and results in the rapid disappearance of ice. In particular, the surface was cooled to the freezing point by early December and the salinity then increased through ice formation (about 0.016 m d‐1) and brine rejection. Once the vertical density gradient was sufficiently eroded, a period of high heat flux (>300 W m‐2) in late January provided enough buoyancy loss to convectively mix the upper water column to at least 200 m. We estimate vertical velocities at about 3 cm s‐1 downward during the initial sinking. The deepening of the thermocline raised surface temperatures by over 1°C resulting in nearly 1.5 × 105 km2 of ice‐melt within two days. Average rates of ice retreat are about 11 km d‐1 southwestward, generally consistent with a wind‐driven flow. Comparison of hydrographic surveys from before and after the overturning indicate the fresh water was advected out of the area, possibly to the south and east of our moorings.  相似文献   
37.
38.
This paper examines the processes responsible for the morphodynamics of an intertidal swash bar at Skallingen, Denmark, during seven successive storms (one with a large surge of +3·02 m DNN). During this period a subtidal bar migrated landward onto the foreshore and continued to migrate across the intertidal zone as a swash bar. The onshore migration of the inner subtidal bar resulted from the erosion of sediment from the upper foreshore and dune ramp during the large storm surge that was transported seaward, causing the landward displacement of the bar through accretion on the landward slope. The magnitude and direction of suspended sediment transport within the intertidal zone, and more specifically at and close to the crest of the swash bar, varied with the ratio of both the significant (Hs) and average (Havg) wave heights to the water depth (hcr) at the swash bar crest (the local depth minimum). The transition between onshore and offshore suspended sediment transport was associated with the average wave of the incident distribution breaking on the swash bar crest (Havgh ≈ 0·33). While the onshore‐directed transport was largest at infragravity frequencies, sediment resuspension was best explained by the skewed accelerations under the surf bores. Offshore transport was dominated by the cross‐shore mean currents (undertow) that developed when the significant wave of the distribution broke on the swash bar crest (Hsh ≈ 0·33) and weakened as the average wave of the distribution started to break at the crest (Havgh ≈ 0·33) and the surf zone approached saturation. In contrast to subtidal bars, the swash bar at Skallingen exhibited a divergent behaviour with respect to the cross‐shore position of the breaker zone, migrating onshore when the average wave broke seaward of the crest and migrating offshore when the average wave broke landward of the crest. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
39.
This paper deals with a field experiment, combining the push–pull and tracer tests, conducted under natural gradient conditions at the international Oslo airport. The studied aquifer, showing very complex hydrogeological settings, has been contaminated by a jet fuel spill. The tracer solutes—bromide, toluene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene, have been injected into the plume. Their migration and changes in concentration of the electron acceptors and metabolic by-products have been monitored. Fast removal of both the non-reactive tracer as well as the aromatic organics has been observed. The tracer pulse could only be detected 2 m downgradient from the injection points. At this point, toluene and o-xylene have been completely removed, however, trimethylbenzenes and naphthalene have been detected. Their depletion, based on calculations of available electron acceptors, can, to a large extent, be accounted for intrinsic biodegradation, with Fe(III) and sulphate reductions as the major controlling processes.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号