首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   2篇
地球物理   1篇
地质学   30篇
海洋学   9篇
天文学   4篇
自然地理   12篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2002年   4篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   2篇
  1977年   1篇
  1970年   1篇
排序方式: 共有56条查询结果,搜索用时 296 毫秒
41.
Subsolidus phase relations have been determined in the systemsSiO2-Cr-0 and MgO-SiO2-Cr-O in equilibrium with metallic Cr,at 1100–1500C and 0–288 kbar. There are no ternaryphases in the SiO2-Cr-O system at these conditions, ie. onlythe assemblage eskolaite + Cr-metal + SiO2 is found. However,in the MgO-containing system, extensive substitution of Cr2+for Mg is observed in (Mg,Cr2+)2SiO4 olivine, (Mg,Cr2+)2Si2O6pyroxene, and (Mg,Cr2+)Cr3+204 spinel. Cr 3+ levels in olivineand pyroxene are below detection limits. The pyroxene is orthorhombicat monoclinic at higher . The structure of the spinels becomestetragonally distorted at is limited by the breakdown of olivine to pyroxene + spinel+ metal. This maximum amount increases strongly with increasingtemperature, reaching >0.2 at 1500C and 48 kbar. Increasing pressure reduces the maximum. Increasing temperature also increases the maximum amounts of Cr2+ which substitute intopyroxene and spinel, indicating that end-member Cr2Si206 andCr3O4 may become stable above 1650C if melting does not intervene.Powder X-ray diffraction analysis of selected runs has beenused to extract molar volumes of the Mg-Cr2+ solid solutionsas a function of composition, which may be extrapolated to predictmolar volumes for Cr2SiO4 (olivine), Cr2Si2O6 (ortho- and clino-pyroxene)and Cr2O4 (cubic spinel) of 477, 680 and 449 cm3, respectively.The experimental data have been fitted to a thermodynamic model,including free energies of formation for end member Cr2SiO4,Cr2Si2O6 and Cr3O4. This model is then used to predict the amountsof Cr2+ which can be expected in olivine in equilibrium withCr-bearing spinel as a function of T, P and fo2. This amountincreases strongly with temperature along standard T-fo2 buffercurves, and is sufficient to explain the observed high Cr contentsof olivine from komatiites and diamond inclusions at reasonableterrestrial fo, values. The lower fo2 of the lunar environmentresults in significant Cr2+ in olivine being stable to muchlower temperatures. The tendency for the oxidation state ofCr, and hence its geochemical properties, to change with temperaturerelative to other redox reactions makes it a potentially usefulmonitor of the temperatures of uppermantle processes, and isa significant factor in the differing styles of igneous differentiationin the Earth and Moon. Corresponding author  相似文献   
42.
This introductory paper lays the basis for this supplementary issue by briefly presenting the state of knowledge on the KwaZulu-Natal (KZN) Bight at the start of this multi-disciplinary, multi-institutional, ship-based research project that ran from 2009 to 2013. The rationale and aims of the project are also described. The project was a major component of the South African Department of Science and Technology’s African Coelacanth Ecosystem Programme (ACEP), which has been prominent in supporting research on the east coast of South Africa and the wider South-West Indian Ocean. Pivotal to this was the RS Algoa, which was made available for two 30-day surveys (winter and summer) in the KZN Bight by the Department of Environmental Affairs. Although some aspects of the bight ecology are known, much of the research is dated and fragmented, and required refreshing and consolidation in order to produce a platform upon which the understanding of the region’s ecosystem functioning could be established. Much of the oceanographic knowledge is also dated, with no dedicated surveys and significant measurements undertaken since 1989. The overarching theme of the KZN Bight project was to examine the relative importance of sources of nutrients to the central KZN coast and how these are taken up and recycled in the ecosystem, and to describe aspects of the benthic biodiversity, which is poorly described in much of this region. An ambitious project, its accessibility to a ship-based research platform and the diverse scientific skills of the participating scientists allowed considerable success, as reflected in the papers that follow.  相似文献   
43.
Chromium as Cr3+ substitutes for octahedrally coordinated Alin upper-mantle minerals, thereby reducing the activity of Al2O3in the system and hence the concentration of Al2O3 in partialmelts. The effect of Cr2O3 on melt compositions multiply saturatedwith the spinel lherzolite phase assemblage has been quantifiedin the system CaO–MgO–Al2O3–SiO2–Cr2O3at 1·1 GPa as a function of 100 Cr/(Cr + Al) in the spinel(Cr#sp). The decrease of Al2O3 in the melt with increasing Cr#spis accompanied by increasing MgO and SiO2, whereas CaO remainsalmost constant. Consequently, the CaO/Al2O3 ratio of the meltincreases with Cr#sp, and the melt becomes richer in normativediopside, hypersthene and quartz. The effect may explain certainmantle melts with unusually high CaO/Al2O3 ratios. The concentrationof Cr2O3 in the melt remains low even at high Cr#sp, which meansthat the strong effect of Cr2O3 on partial melting equilibriais not readily apparent from its concentration in the melt itself.The existence of a highly refractory major component such asCr2O3 nullifies simplified conclusions from the ‘inverseapproach’ in the experimental study of basalt petrogenesis,as there is insufficient information in the composition of thepartial melt to reconstruct the conditions of melting. KEY WORDS: basalt petrogenesis; partial melting; reversal experiment; spinel lherzolite; system CMAS–Cr2O3; CaO/Al2O3 of melt; effect of Cr2O3  相似文献   
44.
45.
46.
Riverine influences on nearshore oceanic habitats often have detrimental consequences leading to algal blooms and hypoxia. In oligo- to mesotrophic systems, however, nutrient delivery via rivers may stimulate production and even be a vital source of nutrients, as may nutrient supplements from upwelling. We investigated the nutrient content (C, N, P) and stoichiometry of sediment, and several pelagic, benthopelagic and benthic species in the KwaZulu-Natal (KZN) Bight, a narrow shelf area on the south-east coast of South Africa, bordering the Agulhas Current. Three suggested nutrient sources to the bight are the Thukela River in the central region of the bight, upwelling in the northern part and a semi-permanent eddy (Durban Eddy) in the southern part. Elemental content of the various groups studied showed significantly higher values for most groups at the site near the Thukela River. C:P and N:P were highest in the southern part of the bight, and lowest near the Thukela Mouth or at Richards Bay in the north, indicating the latter were the P-richer sites. Sediment organic matter showed lowest elemental content, as expected, and zooplankton stoichiometry was highest compared to all other biotic groups. Environmental heterogeneity played a greater role in organismal C, N and P content and stoichiometry compared to phylogeny, with the exception of the differences in C:P and N:P of zooplankton. From this bight-wide study, the higher elemental content and lower ratios at the Thukela Mouth site supported previous findings of the importance of coastal nutrient sources to the bight ecosystem. Reductions in river flow for water use in the catchment areas may therefore have negative consequences for the productivity of the entire ecosystem.  相似文献   
47.
In a region of generally thin Holocene sediment cover along the outer Norwegian continental margin, a 565 cm long piston core was taken, which contained more than 4 m of Holocene clayey silty sediments. A several decimetres thick sandy horizon separated the glacial marine clays with ice-dropped components and the fine-grained Holocene sediments which have bulk sedimentation rates of more than 40 cm/1000 years. The scarcity of biogenous sediment components in the glacial sediments and the increasing frequency of benthonic as well as planktonic fossils in the Holocene deposits points to important changes in the Norwegian Sea hydrography during the time of the Scandinavian deglaciation.  相似文献   
48.
The compositions of multiply saturated partial melts are valuablefor the thermodynamic information that they contain, but aredifficult to determine experimentally because they exist onlyover a narrow temperature range at a given pressure. Here wetry a new approach for determining the composition of the partialmelt in equilibrium with olivine, orthopyroxene, clinopyroxeneand spinel (Ol + Opx + Cpx + Sp + Melt) in the system CaO–MgO–Al2O3–SiO2(CMAS) at 1·1 GPa: various amounts of K2O are added tothe system, and the resulting melt compositions and temperatureare extrapolated to zero K2O. The ‘sandwich’ experimentalmethod was used to minimize problems caused by quench modification,and Opx and Cpx were previously synthesized at conditions nearthose of the melting experiments to ensure they had appropriatecompositions. Results were then checked by reversal crystallizationexperiments. The results are in good agreement with previouswork, and establish the anhydrous solidus in CMAS to be at 1320± 10°C at 1·1 GPa. The effect of K2O is todepress the solidus by 5·8°C/wt %, while the meltcomposition becomes increasingly enriched in SiO2, being quartz-normativeabove 4 wt % K2O. Compared with Na2O, K2O has a stronger effectin depressing the solidus and modifying melt compositions. Theisobaric invariant point in the system CMAS–K2O at whichOl + Opx + Cpx + Sp + Melt is joined by sanidine (San) is at1240 ± 10°C. During the course of the study severalother isobaric invariant points were identified and their crystaland melt compositions determined in unreversed experiments:Opx + Cpx + Sp + An + Melt in the system CMAS at 1315 ±10°C; in CMAS–K2O, Opx + Cpx + Sp + An + San + Meltat 1230 ± 10°C and Opx + Sp + An + San + Sapph +Melt at 1230 ± 10°C, where An is anorthite and Sapphis sapphirine. Coexisting San plus An in three experiments helpdefine the An–San solvus at 1230–1250°C. KEY WORDS: feldspar solvus; igneous sapphirine; mantle solidus; partial melting; systems CMAS and CMAS–K2O  相似文献   
49.
Fluid-absent melting experiments on a biotite (20 wt.%) andhornblende (2 wt.%) bearing tonalitic gneiss were conductedat 6 kbar (900–975C), 10 kbar (875–1075C), and14 kbar (950–975C) to study melt productivity from weaklyperaluminous quartzofeldspathic metamorphic rocks. At 6 kbar,biotite dehydration–melting is completed at 975C viaincongruent melting reactions that produce orthopyroxene, twooxides, and {small tilde}25 wt.% granitic melt. At 6 kbar, hornblendedisappears at 900C, probably in reaction with biotite. At 10kbar, biotite dehydration–melting produces <10 wt.%melt up to 950C via incongruent melting reactions that produceorthopyroxene, garnet, and granitic melt. Hornblende disappearsin the satne temperature interval either by resorption or byreaction with biotite. Widespread biotite dehydration–meltingoccurs between 950 and 975C and produces orthopyroxene, twooxides, and {small tilde}20 wt.% fluorine-rich (up to 0•31wt.%) granitic melt. At 14 kbar only a trace of melt is presentat 950C, and the amounts of hornblende and biotite are virtuallythe same as in the starting material. At 975C, hornblende isgone and {small tilde}10 wt.% granitic melt is produced by meltingof both biotite and hornblende. Our results show that hornblende-bearing assemblages cannotgo through dehydration–melting on their own (althoughthey can in combination with biotite) if the Ca content in thesource rock is too low to stabilize clinopyroxene. In such rocks,hornblende will either resorb or melt by reaction with biotite.Under fluid-absent conditions, intrusion of hot, mantle-derivedmagmas into the lower crust is necessary to initiate widespreaddehydration–melting in rocks with compositions similarto those discussed here. We argue that the high thermal stabilityof biotite in our starting material is caused mainly by theincorporation of fluorine. The relatively high F content inbiotite in the starting material (0•47 wt.%) suggests thatthe rock has experienced dehydroxylation in its past. F enrichmentby a previous fluid-absent partial melting event is excludedbecause of the lack of phases such as orthopyroxene and garnetwhich would have been produced. Our experiments show that thedehydration–melting of such F-enriched biotite producesF-rich granitic liquids, with compositions within the rangeof A-types granites, and leaves behind a granulitic residuedominated by orthopyroxene, quartz, and plagioclase. This studytherefore supports the notion that A-type granites can be generatedby H2O-undersaturated melting of rocks of tonalitic composition(Creaser et al., 1991), but does not require that these sourcerocks should be residual after a previous melting event.  相似文献   
50.
Abstract— Noble gas data from Martian meteorites have provided key constraints about their origin and evolution, and their parent body. These meteorites have witnessed varying shock metamorphic overprinting (at least 5 to 14 GPa for the nakhlites and up to 45–55 GPa (e.g., the lherzolitic shergottite Allan Hills [ALH] A77005), solar heating, cosmic‐ray exposure, and weathering both on Mars and Earth. Influences on the helium budgets of Martian meteorites were evaluated by using a new data set and literature data. Concentrations of 3He, 4He, U, and Th are measured and shock pressures for same sample aliquots of 13 Martian meteorites were determined to asses a possible relationship between shock pressure and helium concentration. Partitioning of 4He into cosmogenic and radiogenic components was performed using the lowest 4He/3He ratio we measured on mineral separates (4He/3He = 4.1, pyroxene of ALHA77005). Our study revealed significant losses of radiogenic 4He. Systematics of cosmogenic 3He and neon led to the conclusion that solar radiation heating during transfer from Mars to Earth and terrestrial weathering can be ruled out as major causes of the observed losses of radiogenic helium in bulk meteorites. For bulk rock we observed a correlation of shock pressure and radiogenic 4He loss, ranging between ?20% for Chassigny and other moderately shocked Martian meteorites up to total loss for meteorites shocked above 40 GPa. A steep increase of loss occurs around 30 GPa, the pressure at which plagioclase transforms to maskelynite. This correlation suggests significant 4He loss induced by shock metamorphism. Noble gas loss in rocks is seen as diffusion due to (1) the temperature increase during shock loading (shock temperature) and (2) the remaining waste heat after adiabatic unloading (post shock temperature). Modeling of 4He diffusion in the main U, Th carrier phase apatite showed that post‐shock temperatures of ?300 °C are necessary to explain observed losses. This temperature corresponds to the post‐shock temperature calculated for bulk rocks shocked at about 40 GPa. From our investigation, data survey, and modeling, we conclude that the shock event during launch of the meteorites is the principal cause for 4He loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号