首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
大气科学   4篇
地质学   8篇
自然地理   3篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  2000年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1973年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
Marine shelf strata of the Quinault Formation reflect the influences of storm–flood processes and convergent margin tectonism on sedimentation and palaeocommunity distributions in an active forearc basin of Early Pliocene age, western Washington, USA. The sedimentologic, ichnologic and invertebrate megafaunal character of coastal sea cliff exposures in the Pratt Cliff–Duck Creek area, Quinault Indian Nation, reveal five different sedimentary facies – scoured, Rosselia, bioturbated, mixed and Acharax. These facies document the shifting interplay and intensities among storms, waves and river‐flood plumes during transgression in inner to mid‐shelf settings. Storm sedimentation on the inner shelf is recorded north of Pratt Cliff by amalgamated, proximal tempestites of the scoured facies, which grade up‐section to thick deposits of hummocky cross‐stratified sandstone, indicative of strong wave influences. These hummocky beds alternate, in metre‐scale packages, with banded mudstone and siltstone that have distinctive sedimentologic and ichnofaunal characteristics (Rosselia facies). In particular the mudstone and siltstone occur as 1–15 cm‐thick, rhythmic, parallel beds that are laterally continuous, internally homogeneous to faintly laminated, and thus similar in nature to fine‐grained, oceanic flood deposits reported from shelf settings offshore the modern Eel River, northern California. The Quinault flood deposits are dominated by the ubiquitous trace fossil Rosselia socialis, comprising vertical, mud‐packed, flaring burrows with a sand‐filled central shaft which has been inferred as the feeding‐dwelling structure of a vermiform invertebrate adapted to high sedimentation rates in inner‐shelf settings. Fairweather conditions in between the higher energy periods of storms, waves and floods are recorded north of Pratt Cliff by the mixed facies, which is interpreted as representing the sand and mud zone of the inner‐ to mid‐shelf transition. Quieter, deeper, mid‐shelf, fairweather settings are typified by the bioturbated facies south of Pratt Cliff, where lower sedimentation rates and lower physical energies produced extensively bioturbated deposits of sandy siltstone punctuated, in places, by isolated sandy beds of distal tempestites. Quinault strata also chronicle stratigraphic signatures of subduction of the Juan de Fuca plate beneath western Washington during the Pliocene. For example, the imprint of geochemically unusual authigenic carbonates and a chemosynthetic palaeocommunity (Acharax facies) have been interpreted as a methane seep on the Quinault seafloor. Furthermore, a mobile rockground epifauna of pholadid bivalves became established on abundant, dark mudstone cobbles and pebbles sourced from the Hoh Assemblage, a Miocene accretionary prism that was actively deforming as well as interacting with Quinault forearc sediments during the Pliocene. Hoh mudstone clasts were supplied to the Quinault shelf via seafloor‐piercing diapirs and eroding mélange shear zones, exposures of which today occur in fault contact with Quinault strata along the coast from Taholah to the Raft River.  相似文献   
15.
Modern acid and neutral saline lakes in Western Australia are an excellent natural laboratory for testing how pH affects halite, and for developing criteria for distinguishing past acid saline waters from past neutral saline waters in the rock record. This study characterizes and compares physical, chemical and biological features in halite precipitated from acid (pH 1·7 to 4·2) and neutral (pH 6·8 to 7·3) saline lakes in southern Western Australia. Supplemental data include synthetic halite grown from acid and neutral saline solutions, as well as halite deposited in Permian acid lakes. Although physical processes of halite growth are not affected by pH, there are differences in the colour, accessory minerals, fluid inclusions and microfossils between acid and neutral halites. Acid lake halite commonly is yellow or orange in colour; neutral lake halites examined in this study are always snow white. Acid halites tend to contain abundant sulphate and iron oxide minerals, both as solid inclusions and as solids within fluid inclusions; neutral halites contain little, if any, sulphates and no iron oxides. Acid fluid inclusion freezing/melting behaviours include characteristics that differ from neutral fluid inclusion behaviours, such as lower eutectic temperatures, higher and wider temperature range of hydrohalite rims with a definable fuzzy border and more complex metastable phases. Acid halite contains 'hairy blobs', clusters of bacterial/archaeal/fungal remains and sulphate crystals, which are not found in halite from neutral lakes. This distinct assemblage of features characteristic of modern acid lake halites may serve as informal criteria for the recognition of past acid lake evaporites in the rock record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号