首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25926篇
  免费   418篇
  国内免费   1287篇
测绘学   1507篇
大气科学   2295篇
地球物理   4858篇
地质学   12329篇
海洋学   1182篇
天文学   1765篇
综合类   2297篇
自然地理   1398篇
  2024年   16篇
  2023年   29篇
  2022年   88篇
  2021年   100篇
  2020年   70篇
  2019年   108篇
  2018年   4812篇
  2017年   4106篇
  2016年   2646篇
  2015年   293篇
  2014年   177篇
  2013年   102篇
  2012年   1069篇
  2011年   2799篇
  2010年   2107篇
  2009年   2393篇
  2008年   1967篇
  2007年   2432篇
  2006年   109篇
  2005年   259篇
  2004年   427篇
  2003年   449篇
  2002年   284篇
  2001年   88篇
  2000年   121篇
  1999年   96篇
  1998年   77篇
  1997年   46篇
  1996年   58篇
  1995年   45篇
  1994年   44篇
  1993年   33篇
  1992年   21篇
  1991年   18篇
  1990年   18篇
  1989年   23篇
  1988年   16篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   22篇
  1980年   19篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   6篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
32.
A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany.  相似文献   
33.
GIS中平面面位误差环的解析模型   总被引:12,自引:3,他引:12  
本文基于随机场理论,导出了随机面元的分布函数和概率密度函数。为了衡量随机面元的位置不确定性,将点位误差椭圆和线位误差带进一步扩展到面位误差环指标。根据推求包括线的原理,导出了多边形面位误差环边界线的解析表达式,并分析了面位误差环的构成机理,证明了误差环边界线为连续闭合曲线的结论。最后通过实例绘制了面位误差环的可视化图形。  相似文献   
34.
The multi‐objective land allocation problem is to optimize the selection of land for different uses based on a set of decision objectives. For most applications, a geographical information system (GIS) is either absent or loosely coupled through file exchange. In this article the evolutionary algorithm (EA), a heuristic solution method for optimization problems, is integrated with a raster GIS to form a spatial decision support system (SDSS) for multi‐objective conservation reserve design. The SDSS effectively combines the functions of a GIS for data management, analysis, and visualization, with the optimization capability of the EA; and provides a uniform way to solve conservation reserve design problems with different types of constraints and objectives. The SDSS is demonstrated through application to the creation of conservation reserves in Bolivia to protect 17 endemic mammals.  相似文献   
35.
《海西交通图集》是以省基础地理信息为基础框架,运用计算机制图技术、数据库技术和全数字桌面出版一体化技术集成制作的综合交通图集,也是一本反映海西交通基础设施及主要成就的图集。对图集的技术创新、内容选题、设计特点等进行分析与探讨。  相似文献   
36.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
37.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   
38.
The topographic bias is defined as the error/bias committed by continuing the external gravity field inside the topographic masses by a harmonic function. We study the topographic bias given by a digital terrain model defined by a spherical template, and we show that the topographic bias is given only by the potential of an inner-zone cap, and it equals the bias of the Bouguer shell, independent of the size of the cap. Then we study the effect on the real Earth by decomposing its topography into a template, and we show also in this case that the topographic bias is that of the Bouguer shell, independent of the shape of the terrain. Finally, we show that the topographic potential of the terrain at the geoid can be determined to any precision by a Taylor expansion outside the Earth’s surface. The last statement is demonstrated by a Taylor expansion to fourth order.  相似文献   
39.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation.  相似文献   
40.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号