首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48077篇
  免费   5049篇
  国内免费   7489篇
测绘学   3888篇
大气科学   6282篇
地球物理   10119篇
地质学   24623篇
海洋学   4797篇
天文学   2528篇
综合类   4241篇
自然地理   4137篇
  2024年   205篇
  2023年   612篇
  2022年   1376篇
  2021年   1577篇
  2020年   1344篇
  2019年   1441篇
  2018年   6042篇
  2017年   5210篇
  2016年   3898篇
  2015年   1653篇
  2014年   1689篇
  2013年   1718篇
  2012年   2667篇
  2011年   4355篇
  2010年   3660篇
  2009年   3811篇
  2008年   3347篇
  2007年   3577篇
  2006年   1210篇
  2005年   1227篇
  2004年   1170篇
  2003年   1095篇
  2002年   968篇
  2001年   769篇
  2000年   764篇
  1999年   809篇
  1998年   656篇
  1997年   578篇
  1996年   548篇
  1995年   440篇
  1994年   409篇
  1993年   369篇
  1992年   314篇
  1991年   214篇
  1990年   176篇
  1989年   150篇
  1988年   114篇
  1987年   76篇
  1986年   67篇
  1985年   52篇
  1984年   36篇
  1983年   29篇
  1982年   27篇
  1981年   38篇
  1980年   34篇
  1979年   21篇
  1978年   12篇
  1976年   10篇
  1958年   11篇
  1954年   9篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
491.
The Late Archaean Closepet Granite batholith in south India is exposed at different crustal levels grading from greenschist facies in the north through amphibolite and granulite facies in the south along a ∼400 km long segment in the Dharwar craton. Two areas, Pavagada and Magadi, located in the Main Mass of the batholith, best represent the granitoid of the greenschist and amphibolite facies crustal levels respectively. Heat flow estimates of 38 mW m−2 from Pavagada and 25 mW m−2 from Magadi have been obtained through measurements in deep (430 and 445 m) and carefully sited boreholes. Measurements made in four boreholes of opportunity in Pavagada area yield a mean heat flow of 39 ± 4 (s.d.) mW m−2, which is in good agreement with the estimate from deep borehole. The study, therefore, demonstrates a clear-cut heat flow variation concomitant with the crustal levels exposed in the two areas. The mean heat production estimates for the greenschist facies and amphibolite facies layers constituting the Main Mass of the batholith are 2.9 and 1.8 μW m−3, respectively. The enhanced heat flow in the Pavagada area is consistent with the occurrence of a radioelement-enriched 2-km-thick greenschist facies layer granitoid overlying the granitoid of the amphibolite facies layer which is twice as thick as represented in the Magadi area. The crustal heat production models indicate similar mantle heat flow estimates in the range 12–14 mW m−2, consistent with the other parts of the greenstone-granite-gneiss terrain of the Dharwar craton.  相似文献   
492.
Hydraulic conductivity (K) for an alluvial system in a riverbank filtration area in Changwon City, South Korea, has been studied using grain-size distribution, pumping and slug tests, and numerical modeling. The alluvial system is composed of layers: upper fine sand, medium sand, lower fine sand, and a highly conductive sand/gravel layer at the base. The geometric mean of K for the sand/gravel layer (9.89?×?10?4 m s?1), as determined by grain-size analyses, was 3.33 times greater than the geometric mean obtained from pumping tests (2.97?×?10?4 m s?1). The geometric mean of K estimates obtained from slug tests (3.08?×?10?6 m s?1) was one to two orders of magnitude lower than that from pumping tests and grain-size analyses. K estimates derived from a numerical model were compared to those derived from the grain-size methods, slug tests and pumping tests in order to determine the degree of deviation from the numerical model. It is considered that the K estimates determined by the slug tests resemble the uppermost part of the alluvial deposit, whereas the K estimates obtained by grain-size analyses and pumping tests are similar to those from the numerical model for the sand/gravel layer of the riverside alluvial system.  相似文献   
493.
In this provenance study of late Palaeozoic metasediments of the Eastern Andean Metamorphic Complex (EAMC) along the south Patagonian proto-Pacific margin of Gondwana, the palaeogeological setting of the continental margin in Devonian–Carboniferous and Permian times is reconstructed. The study is based on detrital heavy mineral contents, chemical compositions of tourmaline grains, and whole rock element and Nd-Sr isotopic compositions. Element and isotopic compositions reveal that Devonian–Carboniferous metaturbidites deposited before the development of a Late Carboniferous–Permian magmatic arc along the margin were mainly fed from felsic, recycled, old continental rocks. The last recycling phase involved erosion of metasediments that were exposed in Patagonia. Feeder systems to the basin cut either through epidote-rich or garnet-rich metasediments. In Permian time, EAMC metaturbidites were deposited next to the evolving magmatic arc and were derived from felsic, crustal rocks. Two provenance domains are recognised. The metasediments of the northern one are chemically similar to those of the Devonian–Carboniferous metasediments. This domain was fed from the metasedimentary host rocks of the magmatic arc. The southern domain probably was fed from the arc proper, as indicated mainly by the dominance of metaplutonic lithic fragments, abundant detrital biotite, and the major element composition of the metasediments.  相似文献   
494.
Thirty-three new measurements on the seaward slope and outer rise of the Japan Trench along a parallel of 38°45′N revealed the existence of high heat flow anomalies on the subducting Pacific plate, where the seafloor age is about 135 m.y.. The most prominent anomaly with the highest value of 114 mW/m2 is associated with a small mound on the outer rise, which was reported to be a kind of mud volcano. On the seaward slope of the trench, heat flow is variable: high (70–90 mW/m2) at some locations and normal for the seafloor age (about 50 mW/m2) at others. The spatial variation of heat flow may be related to development of normal faults and horst/graben structures due to bending of the Pacific plate before subduction, with fluid flow along the fault zones enhancing the vertical heat transfer. Possible heat sources of the high heat flow anomalies are intra-plate volcanism in the last several million years like that discovered recently on the Pacific plate east of the Japan Trench.  相似文献   
495.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   
496.
Information on the distribution of subsurface temperature and hydraulic heads at 24 observation wells in and around the Tokyo Lowland, the eastern part of the Tokyo Metropolitan area, were examined to make clear the relationship between groundwater and the subsurface thermal environment in the urban area. Minimums in temperature–depth logs due to subsurface temperature increasing at shallow parts were recognized in 21 wells. This fact shows subsurface temperature is affected by ground surface warming in almost all of this area. Deeper than minimums, where the effects of surface warming became relatively small, regional variation is observed as follows: high temperatures are shown in the central part to the southern part, and low temperatures shown in the inland to eastern part. The high temperature area corresponds to an area where the lower boundary of groundwater flow is relatively shallow. This area corresponds also to an area with severe land subsidence resulting from excessive groundwater pumping. It is considered that this high temperature area is formed by the effects of upward groundwater flow affected by hydrogeological conditions and pumping. On the other hand, a comparison between past data (1956–1967) and present data (2001–2003) revealed widespread decreasing temperature in the inland area. This is explained by downward groundwater flow based on an analysis of temperature–depth logs. This fact suggests that subsurface temperature is not only increasing from the effects of surface warming but also decreasing from the effects of groundwater environment change due to pumping.  相似文献   
497.
The Oberstdorf nappe of the Western and the Laab nappe of the Eastern Rhenodanubian Flysch (ERF) were independently identified as out-of-sequence thrust units by facies studies (Mattern 1999) and zircon analyses (Trautwein et al. 2001a, b, c), respectively. A new look at both areas reveals mutual similarities and new evidence for the out-of-sequence concept. Paleocurrent and heavy mineral data make it possible to reconstruct the sediment influx directions. From the Barremian to the mid-Campanian, the western and eastern basin segments were fed with south-derived garnet and north-derived zircon/”ZTR” (i.e., zircon, tourmaline, and rutile). Because both out-of-sequence units are relatively rich in zircon/ZTR they must have occupied the northernmost basin position. In the Western Rhenodanubian Flysch segment, the Sigiswang nappe occupied the central and the Üntschen nappe the southernmost basin position. In the ERF segment the central basin is represented by the Greifenstein nappe and the southernmost basin by the Kahlenberg nappe. Both out-of-sequence units do not occur in the northernmost and tectonically lowest position in their respective nappe piles as they were thrust over the other nappes. The reconstructed basin positions of the thrust units are suggested by the observation of a gradient in heavy mineral content in the thrust units. This paleogeographic arrangement is least problematic and renders models with differently positioned thrust units, requiring debris-shedding intrabasinal ridges, as unnecessarily complicated. Instead, we suggest that gradual changes in heavy mineral composition existed in across-basin direction. Garnet may stem from the Central Gneiss Complex of the Tauern window and formerly exposed lateral equivalents, all representing the southern Mid-Penninic zone. We assign the Falknis/Tasna nappe and formerly exposed lateral equivalents to the northern Mid-Penninic zone which served as the zircon/ZTR source. Interpreting Ebbing’s (Ph.D. thesis, Freie Universität Berlin, pp 1-143, 2002; Fig. 6.10) density section, we suggest that Mid-Penninic crust exists beneath the Central Gneiss Complex. During the latest Cretaceous much garnet was also N-derived. This may reflect processes related to the consumption of the North Penninic basin.  相似文献   
498.
The large-scale crustal deformations observed in the Central European Basin System (CEBS) are the result of the interplay between several controlling factors, among which lateral rheological heterogeneities play a key role. We present a finite-element integral thin sheet model of stress and strain distribution within the CEBS. Unlike many previous models, this study is based on thermo-mechanical data to quantify the impact of lateral contrasts on the tectonic deformation. Elasto-plastic material behaviour is used for both the mantle and the crust, and the effects of the sedimentary fill are also investigated. The consistency of model results is ensured through comparisons with observed data. The results resemble the present-day dynamics and kinematics when: (1) a weak granite-like lower crust below the Elbe Fault System is modelled in contrast to a stronger lower crust in the area extending north of the Elbe Line throughout the Baltic region; and (2) a transition domain in the upper mantle is considered between the shallow mantle of the Variscan domain and the deep mantle beneath the East European Craton (EEC), extending from the Elbe Line in the south till the Tornquist Zone. The strain localizations observed along these structural contrasts strongly enhance the dominant role played by large structural domains in stiffening the propagation of tectonic deformation and in controlling the basin formation and the evolution in the CEBS.  相似文献   
499.
The study area is the South Tatarstan Arch located in the Volgo-Ural Region, which is an enigmatic crustal segment occupying one third of the East European Platform. Monitoring studies have shown that fluid discharge processes are still active and time-dependent. This paper presents an integrated review of the geological, geophysical, hydrochemical and geochemical studies of the crystalline basement of Tatarstan. These studies are based on the stratigraphic and compositional schemes within the crystalline basement, the drilling of deep wells, the geodynamic activity of the fractured zones of the crystalline basement and the presence of fluids therein. Furthermore, the changes in the chemical composition of the basement waters are taken into account.  相似文献   
500.
Narragansett Bay has been heavily influenced by human activities for more than 200 years. In recent decades, it has been one of the more intensively fertilized estuaries in the USA, with most of the anthropogenic nutrient load originating from sewage treatment plants (STP). This will soon change as tertiary treatment upgrades reduce nitrogen (N) loads by about one third or more during the summer. Before these reductions take place, we sought to characterize the sewage N signature in primary (macroalgae) and secondary (the hard clam, Mercenaria mercenaria) producers in the bay using stable isotopes of N (δ15N) and carbon (δ13C). The δ15N signatures of the macroalgae show a clear gradient of approximately 4‰ from north to south, i.e., high to low point source loading. There is also evidence of a west to east gradient of heavy to light values of δ15N in the bay consistent with circulation patterns and residual flows. The Providence River Estuary, just north of Narragansett Bay proper, receives 85% of STP inputs to Narragansett Bay, and lower δ15N values in macroalgae there reflected preferential uptake of 14N in this heavily fertilized area. Differences in pH from N stimulated photosynthesis and related shifts in predominance of dissolved C species may control the observed δ13C signatures. Unlike the macroalgae, the clams were remarkably uniform in both δ15N (13.2 ± 0.54‰ SD) and δ13C (−16.76 ± 0.61‰ SD) throughout the bay, and the δ15N values were 2–5‰ heavier than in clams collected outside the bay. We suggest that this remarkable uniformity reflects a food source of anthropogenically heavy phytoplankton formed in the upper bay and supported by sewage derived N. We estimate that approximately half of the N in the clams throughout Narragansett Bay may be from anthropogenic sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号