首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   9篇
测绘学   1篇
大气科学   2篇
地球物理   13篇
地质学   10篇
海洋学   4篇
天文学   17篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  1999年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   
12.
The lithogenic flux of sediment trap material was analyzed from a three year time series (February 2002–March 2005) at 2000 m depth in the Northeast Atlantic (Kiel 276, 33°N, 22°W) with regards to the seasonal and interannual variability of flux intensity and mineralogy—by applying an automated particle SEM-EDX analysis (scanning electron microscope-energy dispersive X-ray analysis). The lithogenic flux shows strong interannual variations with highest lithogenic flux rates occurring during January–February and April–March coupled to the total particle flux. Mean lithogenic flux rates for the sample years are 7.1 (2002–2003), 5.1 (2003–2004) and 16.1 mg m?2 d?1 (2004–2005). Mineral assemblages from the three sample years reveal distinct major minerals related to specific source regions. Clay minerals dominate the lithogenic fraction within the years 2002 and 2004 with illite (2002–2003) and palygorskite (2003–2004) being the major clay minerals. During the year 2004–2005, quartz is the major lithogenic mineral accompanied by smectite. The mineral assemblages hint to a mixture of North African source areas with dominant sources in Mauritania and north western parts of NW Africa for the years 2002–2004 and central Sahara (Algeria–Mali) within the year 2004–2005.  相似文献   
13.
A sediment core from a closed basin lake (Lake Kuhai) from the semi-arid northeastern Tibetan Plateau was analysed for its pollen record to infer Lateglacial and post glacial vegetation and climatic change. At Lake Kuhai five major vegetation and climate shifts could be identified: (1) a change from cold and dry to relatively warmer and more moist conditions at 14.8 cal ka BP; (2) a shift to conditions of higher effective moisture and a stepwise warmer climate at 13.6 cal ka BP; (3) a further shift with increased moisture but colder conditions at 7.0 cal ka BP; (4) a return to a significantly colder and drier phase at 6.3 cal ka BP; (5) and a change back to relatively moist conditions at 2.2 cal ka BP. To investigate the response of lake ecosystems to climatic changes, statistical comparisons were made between the Lake Kuhai pollen record and a formerly published ostracod and sedimentary record from the same sediment core. Furthermore, the pollen and lacustrine proxies from Lake Kuhai were compared to a previously published pollen and lacustrine record from the nearby Lake Koucha. Statistical comparisons were done using non-metric multidimensional scaling and Procrustes rotation. Differences between lacustrine and pollen responses within one site could be identified, suggesting that lacustrine proxies are partly influenced by in-lake or local catchment processes, whereas the terrestrial (pollen) proxy shows a regional climate signal. Furthermore, we found regional differences in proxy response between Lake Kuhai and Lake Koucha. Both pollen records reacted in similar ways to major environmental changes, with minor differences in the timing and magnitude of these changes. The lacustrine records were very similar in their timing and magnitude of response to environmental changes; however, the nature of change was at times very distinct. To place the current study in the context of Holocene moisture evolution across the Tibetan Plateau, we applied a five-scale moisture index and average link clustering to all available continuous palaeo-climate records from the Tibetan Plateau to possibly find general patterns of moisture evolution on the Plateau. However, no common regional pattern of moisture evolution during the Holocene could be detected. We assign this to complex responses of different proxies to environmental and atmospheric changes in an already very heterogeneous mountain landscape where minor differences in elevation can cause strong variation in microenvironments.  相似文献   
14.
Z‐axis tipper electromagnetic and broadband magnetotelluric data were used to determine three‐dimensional electrical resistivity models of the Morrison porphyry Cu–Au–Mo deposit in British Columbia. Z‐axis tipper electromagnetic data are collected with a helicopter, thus allowing rapid surveys with uniform spatial sampling. Ground‐based magnetotelluric surveys can achieve a greater exploration depth than Z‐axis tipper electromagnetic surveys, but data collection is slower and can be limited by difficult terrain. The airborne Z‐axis tipper electromagnetic tipper data and the ground magnetotelluric tipper data show good agreement at the Morrison deposit despite differences in the data collection method, spatial sampling, and collection date. Resistivity models derived from individual inversions of the Z‐axis tipper electromagnetic tipper data and magnetotelluric impedance data contain some similar features, but the Z‐axis tipper electromagnetic model appears to lack resolution below a depth of 1 km, and the magnetotelluric model suffers from non‐uniform and relatively sparse spatial sampling. The joint Z‐axis tipper electromagnetic inversion solves these issues by combining the dense spatial sampling of the airborne Z‐axis tipper electromagnetic technique and the deeper penetration of the lower frequency magnetotelluric data. The resulting joint resistivity model correlates well with the known geology and distribution of alteration at the Morrison deposit. Higher resistivity is associated with the potassic alteration zone and volcanic country rocks, whereas areas of lower resistivity agree with known faults and sedimentary units. The pyrite halo and ≥0.3% Cu zone have the moderate resistivity that is expected of disseminated sulphides. The joint Z‐axis tipper electromagnetic inversion provides an improved resistivity model by enhancing the lateral and depth resolution of resistivity features compared with the individual Z‐axis tipper electromagnetic and magnetotelluric inversions. This case study shows that a joint Z‐axis tipper electromagnetic–magnetotelluric approach effectively images the interpreted mineralised zone at the Morrison deposit and could be beneficial in exploration for disseminated sulphides at other porphyry deposits.  相似文献   
15.
The deglaciation history and Holocene environmental evolution of northern Wijdefjorden, Svalbard, are reconstructed using sediment cores and acoustic data (multibeam swath bathymetry and sub-bottom profiler data). Results reveal that the fjord mouth was deglaciated prior to 14.5±0.3 cal. ka BP and deglaciation occurred stepwise. Biomarker analyses show rapid variations in water temperature and sea ice cover during the deglaciation, and cold conditions during the Younger Dryas, followed by minimum sea ice cover throughout the Early Holocene, until c. 7 cal. ka BP. Most of the glaciers in Wijdefjorden had retreated onto land by c. 7.6±0.2 cal. ka BP. Subsequently, the sea-ice extent increased and remained high throughout the last part of the Holocene. We interpret a high Late Holocene sediment accumulation rate in the northernmost core to reflect increased sediment flux to the site from the outlet of the adjacent lake Femmilsjøen, related to glacier growth in the Femmilsjøen catchment area. Furthermore, increased sea ice cover, lower water temperatures and the re-occurrence of ice-rafted debris indicate increased local glacier activity and overall cooler conditions in Wijdefjorden after c. 0.5 cal. ka BP. We summarize our findings in a conceptual model for the depositional environment in northern Wijdefjorden from the Late Weichselian until present.  相似文献   
16.
17.
Mobile in‐situ sensor platforms such as Unmanned Aerial Vehicles can be used in environmental monitoring. In time‐critical monitoring scenarios as for example in emergency response, and in the exploration of highly dynamic phenomena, obtaining the relevant data with one or few mobile sensors is challenging. It requires an intelligent sampling strategy that integrates prior information and adapts to the dynamics of the observed phenomenon, based on the collected sensor data. Available information about the observed phenomenon may be incomplete or imprecise and therefore insufficient for quantitative modeling. We address this problem by reasoning about the plume movement and size on a qualitative level and present an algorithm for tracking a dynamic plume that integrates this qualitative information with the collected sensor data. We evaluate our algorithm using simulated data sets of three different moving and expanding gas plumes. By means of simulations we show that the qualitative methods can be used to infer new information about the properties of a moving plume and to adapt the sensor movement for tracking the plume. Both can be done with low computational effort, without absolute positioning capability of the sensor, and with less input information than required by quantitative approaches.  相似文献   
18.
Activity and stability phases as well as geomorphic processes within the Critical Zone are well known. Erosion and deposition of sediments represent activity; soils represent geomorphic stability phases. Data are presented from a 4 m deep sediment section that was dated by luminescence techniques. Upslope erosion and resulting sedimentation started in the late Pleistocene around 18 ka until 12 ka. Conditions at the study site then changed, which led to the formation of a well-developed soil. Radiocarbon dating of the organic matter yielded ages between 8552 and 8995 cal. BP. From roughly 6.2 to 5.4 ka another activity phase accompanied by according sediment deposition buried the soil and a new soil, a Cambisol, was formed at the surface. The buried soil is a strongly developed Luvisol. The black colors in the upper part of the buried soil are not the result of pedogenic accumulation of normal organic matter within an A-horizon. Nuclear magnetic resonance spectroscopy clearly documents the high amount of aromatic components (charcoal), which is responsible for the dark color. This indicates severe burning events at the site and the smaller charcoal dust (black carbon) was transported to deeper parts of the profile during the process of clay translocation.  相似文献   
19.
Previous estimates of the volatile contents of Martian basalts, and hence their source regions, ranged from nearly volatile‐free through estimates similar to those found in terrestrial subduction zones. Here, we use the bulk chemistry of Martian meteorites, along with Martian apatite and amphibole chemistry, to constrain the volatile contents of the Martian interior. Our estimates show that the volatile content of the source region for the Martian meteorites is similar to the terrestrial Mid‐Ocean‐Ridge Mantle source. Chlorine is enriched compared with the depleted terrestrial mantle but is similar to the terrestrial enriched source region; fluorine is similar to the terrestrial primitive mantle; and water is consistent with the terrestrial mantle. Our results show that Martian magmas were not volatile saturated; had water/chlorine and water/fluorine ratios ~0.4–18; and are most similar, in terms of volatiles, to terrestrial MORBs. Presumably, there are variations in volatile content in the Martian interior as suggested by apatite compositions, but more bulk chemical data, especially for fluorine and water, are required to investigate these variations. Finally, the Noachian Martian interior, as exemplified by surface basalts and NWA 7034, may have had higher volatile contents.  相似文献   
20.
The architecture of the critical zone includes the distribution, thickness, and contacts of various types of slope deposits and weathering products such as saprolite and weathered bedrock resting on solid bedrock. A quantitative analysis of architecture is necessary for many model‐driven approaches used by pedologic, geomorphic, hydrologic or biologic studies. We have used electrical resistivity tomography, a well‐established geophysical technique causing minimum surficial disturbance, to portray the subsurface electrical resistivity differences at three study sites (Green Lakes Valley; Gordon Gulch; Betasso) at the Boulder Creek Critical Zone Observatory (BcCZO). Possible limitations of the technique are discussed. Interpretation of the specific resistivity values using natural outcrops, pits, roadcuts and drilling data as ground truth information allows us to image the critical zone architecture of each site. Green Lakes Valley (3700 MASL), a glacially eroded alpine basin, shows a rather simple, split configuration with coarse blockfields and sediments, partly containing permafrost above bedrock. The critical zone in Gordon Gulch (2650 MASL), a montane basin with rolling hills, and Betasso (1925 MASL), a lower montane basin with v‐shaped valleys, is more variable due to a complex Quaternary geomorphic history. Boundaries between overlying stratified slope deposits and saprolite were identified at mean depths of 3.0 ± 2.2 m and 4.1 ± 3.6 m in the respective sites. The boundary between saprolite and weathered bedrock is deeper in Betasso at 5.8 ± 3.7 m, compared with 4.3 ± 3.0 m in Gordon Gulch. In general, the data are consistent with results from seismic studies, but electrical resistivity tomography documents a 0.5–1.5 m shallower critical zone above the weathered bedrock on average. Additionally, we document high lateral variability, which results from the weathering and sedimentation history and seems to be a consistent aspect of critical zone architecture within the BcCZO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号