首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8394篇
  免费   290篇
  国内免费   96篇
测绘学   203篇
大气科学   570篇
地球物理   1952篇
地质学   2994篇
海洋学   752篇
天文学   1292篇
综合类   19篇
自然地理   998篇
  2021年   91篇
  2020年   114篇
  2019年   115篇
  2018年   168篇
  2017年   163篇
  2016年   227篇
  2015年   195篇
  2014年   196篇
  2013年   471篇
  2012年   251篇
  2011年   316篇
  2010年   293篇
  2009年   344篇
  2008年   328篇
  2007年   279篇
  2006年   320篇
  2005年   240篇
  2004年   295篇
  2003年   267篇
  2002年   273篇
  2001年   174篇
  2000年   176篇
  1999年   145篇
  1998年   147篇
  1997年   109篇
  1996年   122篇
  1995年   120篇
  1994年   134篇
  1993年   114篇
  1992年   117篇
  1991年   111篇
  1990年   101篇
  1989年   87篇
  1988年   91篇
  1987年   123篇
  1986年   102篇
  1985年   169篇
  1984年   187篇
  1983年   145篇
  1982年   128篇
  1981年   131篇
  1980年   108篇
  1979年   126篇
  1978年   118篇
  1977年   104篇
  1976年   97篇
  1975年   93篇
  1974年   68篇
  1973年   83篇
  1972年   50篇
排序方式: 共有8780条查询结果,搜索用时 15 毫秒
61.
There is very little understanding of tellurium (Te) distribution and behaviour in sedimentary rocks. A suite of 15 samples of reduction spheroids (centimetre‐scale pale spheroids in otherwise red rock), including samples from eight localities in Triassic red beds across the British Isles, were mapped for Te using Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry. Almost all showed enrichment in Te in the cores of the spheroids relative to background red bed concentrations, by up to four orders of magnitude. Some were also enriched over background in gold and/or mercury. In one case, discrete telluride minerals were recorded. The data show that Te is mobile and can be concentrated in low‐temperature sedimentary environments, controlled by redox variations. The consistency in enrichment across widely separate localities implies that the enrichment is a normal aspect of red bed diagenesis and so likely to be controlled by a ubiquitous process, such as microbial activity.  相似文献   
62.
An approximate form of the Boltzmann equation has been used to obtain local ionization rates due to the absorption of galactic cosmic rays in the Jovian atmosphere. It is shown that the muon flux component of the cosmic ray-induced cascade may be especially importannt in ionizing the atmosphere at levels where the total number density exceeds 1019 cm?3 (well below the ionospheric layers produced by solar euv). A model containing both positive and negative ion reactions has been employed to compute equilibrium electron and ion number densities. Peak electron number densities on the order of 103 cm?3 may be expected even at relatively low magnetic latitudes. The dominant positive ions are NH4+ and CnHm+ cluster ions, with n ? 2; it is suggested that the absorption of galactic cosmic ray energy at such relatively high pressures in the Jovian atmosphere (M ? 1018to 1020cm?3) and the subsequent chemical reactions may be instrumental in the local formation of complex hydrocarbons.  相似文献   
63.
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers. The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.  相似文献   
64.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
65.
Mapping and sampling with DSRV “Alvin” has established that sulfide blocks 0.5 m across, dredged from the axial valley of the Endeavour Segment at 47°57′N, are samples of unusually large sulfide structures. The steep-sided structures, up to 30 m in length, 20 m in height, and 10–15 m across, are localized by venting along normal faults at the base of the western axial valley wall, and are distributed for about 200 m along strike paralleling the 020 trend of the ridge crest. High-temperature fluids (350 to more than 400°C) pass through the massive sulfide structures and enter seawater through small, concentric “nozzle-like” features projecting from the top or the sides of the larger vent structures. Diffuse, low-temperature flow is pervasive in the vicinity of the active sulfide structures, exiting from basalt and sulfide surfaces alike. Evidence of recent volcanic activity is sparse.The two largest samples taken with the dredge would not have been recoverable using the submersible. These samples represent massive, complex portions of the sulfide structures which were not closely associated with rapid high-temperature fluid flow at the time of sampling; they contain textural evidence of sealed hydrothermal fluid exit channels. Mineralogy is dominated by Fe sulfides nnd amorphous silica. Pyrite, marcasite, wurtzite, chalcopyrite, and iss are the most common sulfide phases. Pyrrhotite, galena, and sphalerite are present in trace amounts. Barite, amorphous silica, and chalcedony are the only non-sulfide phases; anhydrite is not observed in any of the dredge samples, although it is common in the chimney-like samples recovered by “Alvin”.Specific mineralogical-textural zones within the dredge samples are anaoogous to individual layers in East Pacific Rise at 21°N and southern Juan de Fuca Ridge samples, with two exceptions: a coarse-grained, highly porous Fe sulfide-rich interior containing sulfidized tubeworm casts, and a 2–5 cm thick zone near the outer margin of the samples dominated by late stage amorphous silica. The porous interior may have formed by dendritic crystal growth from a slowly circulating fluid within a large enclosed chamber. The amorphous silica deposited from a seawater/hydrothermal fluid mixture percolating slowly through the walls of the enclosed chamber; conductive cooling of the fluid as it traversed the walls allowed amorphous silica to precipitate. These silica-rich zones are the densest, most durable portions of the structures and may be responsible for the lasting stability of the large sulfide features.Observations in these samples are consistent with two distinct phases of development. Phase 1 is analogous to chimney growth and construction at 21°N and ends when flow channels become sealed to rapid flow of through-going fluid. The flow is evidently redirected within the structure. Phase 2 includes dissolution of anhydrite and precipitation of amorphous silica during conductive cooling of sluggishly circulating hydrothermal fluid or seawater/hydrothermal fluid mixtures. Evolution of vent structures through phase 2 allows lateral and vertical growth of unusually large structures.  相似文献   
66.
From models to performance assessment: the conceptualization problem   总被引:5,自引:0,他引:5  
Bredehoeft JD 《Ground water》2003,41(5):571-577
Today, models are ubiquitous tools for ground water analyses. The intent of this paper is to explore philosophically the role of the conceptual model in analysis. Selection of the appropriate conceptual model is an a priori decision by the analyst. Calibration is an integral part of the modeling process. Unfortunately a wrong or incomplete conceptual model can often be adequately calibrated; good calibration of a model does not ensure a correct conceptual model. Petroleum engineers have another term for calibration; they refer to it as history matching. A caveat to the idea of history matching is that we can make a prediction with some confidence equal to the period of the history match. In other words, if we have matched a 10-year history, we can predict for 10 years with reasonable confidence; beyond 10 years the confidence in the prediction diminishes rapidly. The same rule of thumb applies to ground water model analyses. Nuclear waste disposal poses a difficult problem because the time horizon, 1000 years or longer, is well beyond the possibility of the history match (or period of calibration) in the traditional analysis. Nonetheless, numerical models appear to be the tool of choice for analyzing the safety of waste facilities. Models have a well-recognized inherent uncertainty. Performance assessment, the technique for assessing the safety of nuclear waste facilities, involves an ensemble of cascading models. Performance assessment with its ensemble of models multiplies the inherent uncertainty of the single model. The closer we can approach the idea of a long history with which to match the models, even models of nuclear waste facilities, the more confidence we will have in the analysis (and the models, including performance assessment). This thesis argues for prolonged periods of observation (perhaps as long as 300 to 1000 years) before a nuclear waste facility is finally closed.  相似文献   
67.
68.
69.
The state of the art of modeling fluid flow in shale reservoirs is dominated by dual-porosity models which divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano-pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual-porosity models and Darcy’s law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of the complex flow mechanisms occurring in these reservoirs. This paper presents a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three porosity systems: inorganic matter, organic matter (mainly kerogen), and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of nano-pores and micro-pores in kerogen are incorporated into the simulator. The multiple-porosity model is built upon a unique tool for simulating general multiple-porosity systems in which several porosity systems may be tied to each other through arbitrary connectivities. This new model allows us to better understand complex flow mechanisms and eventually is extended into the reservoir scale through upscaling techniques. Sensitivity studies on the contributions of the different flow mechanisms and kerogen properties give some insight as to their importance. Results also include a comparison of the conventional dual-porosity treatment and show that significant differences in fluid distributions and dynamics are obtained with the improved multiple-porosity simulation.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号