首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   7篇
  国内免费   6篇
测绘学   5篇
大气科学   27篇
地球物理   81篇
地质学   136篇
海洋学   38篇
天文学   39篇
自然地理   36篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   11篇
  2018年   9篇
  2017年   6篇
  2016年   8篇
  2015年   10篇
  2014年   16篇
  2013年   24篇
  2012年   14篇
  2011年   25篇
  2010年   19篇
  2009年   27篇
  2008年   16篇
  2007年   15篇
  2006年   21篇
  2005年   12篇
  2004年   16篇
  2003年   16篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1976年   2篇
  1975年   3篇
  1973年   5篇
排序方式: 共有362条查询结果,搜索用时 203 毫秒
101.
Hydrological monitoring in complex, dynamic northern floodplain landscapes is challenging, but increasingly important as a consequence of multiple stressors. The Peace-Athabasca Delta in northern Alberta, Canada, is a Ramsar Wetland of International Importance reliant on episodic river ice-jam flood events to recharge abundant perched lakes and wetlands. Improved and systematic monitoring of landscape-scale hydrological connectivity among freshwater ecosystems (rivers, channels, wetlands, and lakes) is needed to guide stewardship decisions in the face of climate change and upstream industrial development. Here, we use water isotope compositions, supplemented by measurements of specific conductivity and field observations, from 68 lakes and 9 river sites in May 2018 to delineate the extent and magnitude of spring ice-jam induced flooding along the Peace and Athabasca rivers. Lake-specific estimates of input water isotope composition (δI) were modelled after accounting for influence of evaporative isotopic enrichment. Then, using the distinct isotopic signature of input water sources, we develop a set of binary mixing models and estimate the proportion of input to flooded lakes attributable to river floodwater and precipitation (snow or rain). This approach allowed identification of areas and magnitude of flooding that were not captured by other methods, including direct observations from flyovers, and to demarcate flow pathways in the delta. We demonstrate water isotope tracers as an efficient and effective monitoring tool for delineating spatial extent and magnitude of an important hydrological process and elucidating connectivity in the Peace-Athabasca Delta, an approach that can be readily adopted at other floodplain landscapes.  相似文献   
102.
Within the framework of the multidisciplinary RECS project and with the aim of describing the particle flux transfer from the continental shelf to the deep basin, an array of five mooring lines equipped with a total of five pairs of PPS3/3 sequential-sampling sediment traps and RCM-7/8 current meters were deployed 30 m above the bottom from March 2003 to March 2004 inside and outside the Blanes Canyon. One mooring line was located in the upper canyon at 600 m depth, one in the canyon axis at 1700 m depth and other two close to the canyon walls at 900 m depth. A fifth mooring line was deployed in the continental open slope at 1500 m water depth.The highest near-bottom downward particle flux (14.50 g m−2 d−1) was recorded at the trap located in the upper canyon (M1), where continental inputs associated with the presence of the Tordera River are most relevant. On the other hand, the downward fluxes (4.35 g m−2 d−1) in the canyon axis (M2) were of the same order as those found in the western flank (M3) of the canyon. Both values were clearly higher than the value (1.95 g m−2 d−1) recorded at the eastern canyon wall (M4). The open slope (M5) mass flux (5.42 mg m−2 d−1) recorded by the sediment trap located outside the canyon system was three orders of magnitude lower than the other values registered by the inner canyon stations. The relevance of our data is that it explains how the transport pathway in the canyon occurs through its western flank, where a more active and persistent current toward the open ocean was recorded over the entire year of the experiment.Off-shelf sediment transport along the canyon axis showed clear differences during the period of the study, with some important events leading to strong intensifications of the current coupled with large transport of particle fluxes to the deepest parts of the canyon. Such events are primarily related to increases in river discharge and the occurrence of strong storms and cascading events during the winter.In summary, in this study it is shown that the dynamics of the water masses and the currents in the study area convert the sharp western flank of the Blanes Canyon in a more active region that favors erosion processes than the eastern flank, which has a smoother topography and where the absence of erosional conditions yields to steadier sedimentary processes.  相似文献   
103.
Dynamical features of the East Greenland Current (EGC) are synthesized from a survey conducted by the Swedish icebreaker Oden during the International Arctic Ocean - 02 expedition (AO-02) in May 2002 with emphasis on the liquid freshwater transport and Polar Surface Water. The data include hydrography and lowered acoustic doppler current profiler (LADCP) velocities in eight transects along the EGC, from the Fram Strait in the north to the Denmark Strait in the south. The survey reveals a strong confinement of the low-salinity polar water in the EGC to the continental slope/shelf—a feature of relevance for the stability of the thermohaline circulation in the Arctic Mediterranean. The southward transport of liquid freshwater in the EGC was found to vary considerably between the sections, ranging between 0.01 and 0.1 Sverdrup. Computations based on geostrophic as well as LADCP velocities give a section-averaged southward freshwater transport of 0.06 Sverdrup in the EGC during May 2002. Furthermore, Oden data suggest that the liquid freshwater transport was as large north of the Fram Strait as it was south of the Denmark Strait.  相似文献   
104.
Fauna species living in seagrass meadows depend on different food sources, with seagrasses often being marginally important for higher trophic levels. To determine the food web of a mixed-species tropical seagrass meadow in Sulawesi, Indonesia, we analyzed the stable isotope (δ13C and δ15N) signatures of primary producers, particulate organic matter (POM) and fauna species. In addition invertebrates, both infauna and macrobenthic, and fish densities were examined to identify the important species in the meadow. The aims of this study were to identify the main food sources of fauna species by comparing isotopic signatures of different primary producers and fauna, and to estimate qualitatively the importance of seagrass material in the food web. Phytoplankton and water column POM were the most depleted primary food sources for δ13C (range −23.1 to −19.6‰), but no fauna species depended only on these sources for carbon. Epiphytes and Sargassum sp. had intermediate δ13C values (−14.2 to −11.9‰). Sea urchins, gastropods and certain fish species were the main species assimilating this material. Seagrasses and sedimentary POM had the least depleted values (−11.5 to −5.7‰). Between the five seagrass species significant differences in δ13C were measured. The small species Halophila ovalis and Halodule uninervis were most depleted, the largest species Enhalus acoroides was least depleted, while Thalassia hemprichii and Cymodocea rotundata had intermediate values. Fourteen fauna species, accounting for 10% of the total fauna density, were shown to assimilate predominantly (>50%) seagrass material, either directly or indirectly by feeding on seagrass consumers. These species ranged from amphipods up to the benthic top predator Taeniura lymma. Besides these species, about half of the 55 fauna species analyzed had δ13C values higher than the least depleted non-seagrass source, indicating they depended at least partly for their food on seagrass material. This study shows that seagrass material is consumed by a large number of fauna species and is important for a large portion of the food web in tropical seagrass meadows.  相似文献   
105.
106.
107.
The Khushaym Matruk site in central Jordan may represent a natural analogue depicting the interaction of alkaline solutions with a clayey sedimentary formation or with clay-rich confining barriers at the interface with concrete structures in waste disposal sites. In this locality, past spontaneous combustion of organic matter in a clayey biomicritic formation produced a ca. 60 m-thick layer of cement-marble containing some of the high-temperature phases usually found in industrial cements (e.g., spurrite, brucite, and Ca-aluminate). A vertical cross-section of the underlying sediments was used in order to study the interaction between cement-marbles and neighbouring clayey limestones under weathering conditions. A thermodynamic approach of the alteration parageneses (calcite–jennite–afwillite–brucite and CSH phases) in the cement-marbles constrains the interacting solutions to have had pH-values between 10.5 and 12. Over 3 m, the sediments located beneath the metamorphic unit were compacted and underwent carbonation. They display large C and O isotopic variations with respect to “pristine” sediments from the bottom of the section. Low δ13C-values down to −31.4‰/PDB show the contribution of CO2 derived from the oxidization of organic matter and from the atmosphere to the intense carbonation process affecting that particular sedimentary level. The size of the C isotopic anomalies, their geometrical extent and their coincidence with the variations of other markers like the Zn content, the structure of organic matter, the mineralogical composition, all argue that the carbonation process was induced by the percolation of high pH solutions which derived from the alteration of cement-marbles. The temperature of the carbonation process remains conjectural and some post-formation O isotopic reequilibration likely affected the newly-formed carbonate. Carbonation induced a considerable porosity reduction, both in fractures and matrixes. The Khushaym Matruk site may have some bearing to the early life of a repository site, when water saturation of the geological formations hosting the concrete structures is incomplete, enabling simultaneous diffusion of alkaline waters and gaseous CO2 in the near field.  相似文献   
108.
Spontaneous combustion, less than 1 Ma ago, affected a 60-m thick sediment pile of biomicrite at the Khushaym Matruck site (Jordan). The present study shows that three retrograde alteration stages occurred: weathering, thermal stress and oxidative alkaline perturbation. μ-FT-i.r. spectra of isolated kerogens and oxygen index of whole rocks indicate that oxidation of organic matter occurred down to ∼10 m beneath the metamorphosed zone at Khushaym Matruck. The occurrence of the oxidative weathering bacterially mediated, as suggested by the mass chromatograms of saturated hydrocarbons, can explain high Rock-Eval Tmax values and low petroliferous potential measured along the sedimentary pile. On the other hand, the thermal extent of combustion events was limited to the first 2 m from the contact. The mean reflectance of 0.20–0.24% and porosity of ca. 50% of the grey clayey biomicrites indicate that organic matter was very immature and sediments were unconsolidated at the time of the combustion event. Using mineralogy, microscopic analyses of vegetable debris and magnetic susceptibility, a suite of characteristic points corresponding to the thermal imprint can be assessed: (i) x = 0m, T ∼ 1000 °C, (ii) x = 1 m, T ∼ 350 °C, (iii) x = 2 m, T ∼ 150 °C and (iv) x > ∼ 8 m, T ∼ 30 °C. Paleocirculation of meteoric groundwater in the ‘cement-marbles’ generated high-pH fluids that have circulated via fractures and through the matrix porosity of the underlying biomicrites but have also induced alkaline hydrolysis and oxidative attack of the organic matter. The polysaccharide/lignin ratio derived from μ-FT-i.r. analyses shows that the delignification of vegetable debris and degradation of polysaccharides progressively decline in the indurated zone, which indicates a decrease in the pH of migrating solutions. The latter also severely oxidized organic matter at 2.10 and 3.05 m as revealed by the oxygen index and induced the generation of bitumen. The spatial correlation between the oxidation levels of organic matter and the metal contents (Fe, Ti and Cr) suggests that redox reactions were responsible for the immobilization of metals in the indurated biomicrites. The intensity of these reactions is attributed to changes in the fluid flow regime within the sedimentary column.  相似文献   
109.
Summary A fully cored drillhole was drilled to 1596m by the Czech Geological Survey in 1961–1963 in the central part of the Cínovec (Zinnwald) granite cupola. Two types of granite were intersected: zinnwaldite granite (ZG), observed down to a depth of 730m, and protolithionite granite (PG), occurring to the end of the hole. The core was used to study the distribution and chemistry of: zircon, thorite, xenotime, monazite, bastnäsite, synchysite, REE oxyfluorides and hydroxyfluorides. Zircon occurs throughout the drillcore; it is strongly hydrated and fluorinated with about 18.5wt.% H2O content in the apical part of the cupola. Its F-content reaches 2.41wt.%. Within the PG, the F concentration in zircon is low. Zircon is poor in Th and U and its HfO2 contents vary from 1.01 to 5.24wt.%. Thorite is common in the PG, becoming rare in the ZG. It is strongly hydrated (up to 14wt.% H2O) and fluorinated (up to 2.04wt.% F). Extensive solid solution between ThSiO4 and YPO4 was observed. Xenotime is strongly hydrated (up to 16wt.% H2O), but its F content is low (<0.31wt.%). Two types of monazite were identified: Th-rich (up to 9.3wt.% ThO2) in the ZG, and Th-poor (<2.5wt.% ThO2) in the PG. Monazite remained stable during the hydration and fluorination process. Its REE chondrite-normalized distribution patterns show negative anomalies for La and Nd and a pronounced negative anomaly for Eu. Chemical compositions of several REE oxyfluorides and hydroxyfluorides were studied. REE fluorocarbonates are represented by bastnäsite and synchysite. Bastnäsite is abundant in the ZG. Its chondrite-normalized REE patterns are characterized by an important negative Eu anomaly and downward kinks at La and Nd. Synchysite-(Ce) and synchysite-(Y) are particularly well developed in the deeper parts of the cupola, and exhibit REE distribution patterns characterized by a weak negative Eu anomaly (synchysite-(Ce)), or a weak positive Eu anomaly (synchysite-(Y)).The distribution of accessory minerals reveals five major evolution stages: (1) Early magmatic crystallization of albite and orthoclase. (2) A late magmatic stage comprising protolithionite, quartz, accessory zircon, thorite, xenotime and monazite. (3) Interaction of this magmatic association with a fluid phase rich in F, CO2 and H2O, leading to the transformation protolithionite zinnwaldite and to the remobilisation of Nb, Ta, Ti, W, Sn. Accessory minerals formed during stage (2) were hydrated and fluorinated, except monazite. (4) The transfer of volatiles into the apical part of the cupola followed by the opening of the magmatic system generated microgranites and hydrolysis-type reactions leading to the appearance of REE oxyfluorides and hydroxyfluorides. (5) A late CO2- and F-rich fluid phase was responsible for the deposition of REE fluorocarbonates. Monazite and xenotime became unstable in the apical part of the cupola. An influx of fluids with high Ca-activity occurred late during stage (5) and led to the formation of synchysite, and finally to the extensive precipitation of fluorite.  相似文献   
110.
Variations in the physico-chemical speciation of the rare earth elements (REE) have been investigated in a subarctic boreal river during an intense spring flood event using prefiltered (<100 μm) samples, cross-flow (ultra)filtration (CFF), flow field-flow fractionation (FlFFF), and diffusive gradients in thin films (DGT). This combination of techniques has provided new information regarding the release and transport of the REE in river water. The colloidal material can be described in terms of two fractions dominated by carbon and iron, respectively. These two fractions, termed colloidal carrier phases, showed significant temporal changes in concentration and size distribution. Before the spring flood, colloidal carbon concentrations were low, the colloids being dominated by relatively large iron colloids. Colloidal concentrations increased sharply during the spring flood, with smaller carbon colloids dominating. Following the spring flood, colloidal concentrations decreased again, smaller carbon colloids still dominating. The REE are transported mainly in the particulate and colloidal phases. Before the spring flood, the REE composition of all measured fractions was similar to local till. During the spring flood, the REE concentrations in the colloidal and particulate fractions increased. The increase was most marked for the lighter REE, which therefore showed a strong enrichment when normalized to local till. Following the spring flood, the REE concentrations decreased again and reverted to a distribution similar to local till. These changes in the concentration and distributions of carbon iron and REE are interpreted in terms of changing hydrological flow paths in soil and bedrock which occur during the spring flood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号