首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   5篇
  国内免费   1篇
测绘学   18篇
大气科学   20篇
地球物理   70篇
地质学   135篇
海洋学   12篇
天文学   46篇
自然地理   17篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   11篇
  2015年   6篇
  2014年   10篇
  2013年   11篇
  2012年   19篇
  2011年   17篇
  2010年   5篇
  2009年   21篇
  2008年   15篇
  2007年   19篇
  2006年   18篇
  2005年   22篇
  2004年   19篇
  2003年   18篇
  2002年   8篇
  2001年   5篇
  2000年   10篇
  1999年   6篇
  1998年   12篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1987年   2篇
  1985年   2篇
  1984年   5篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有318条查询结果,搜索用时 140 毫秒
21.
Concentrations of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were determined in 14 sediment samples collected from four sites in the Mai Po Marshes Nature Reserve (within a RAMSAR Site) and from another six sites in Victoria Harbour and along the Hong Kong coastline. Elevated levels of PCDDs, and particularly OCDD, were detectable in all samples collected from the Mai Po Marshes and five of the six sites. In contrast to PCDDs, PCDFs were mainly found in sediment samples collected from industrial areas (Kwun Tong and To Kwa Wan) in Victoria Harbour. PCDD/F levels and congener profiles in the samples from the Mai Po Marshes Nature Reserve in particular show strong similarities to those reported in studies which have attributed similar elevated PCDD concentrations to nonanthropogenic PCDD sources.  相似文献   
22.
23.
24.
A field instrument designed for continuous radon measurement is described. It is based on a solid state electronic sensor that is housed in a rugged casing that also contains its associated electronics. This lightweight device is designed for selective counting of α-decays with recorded count values over specified intervals being stored within the device. Real time data processing to reject spurious values is automatically performed by the instrument. Data are downloaded by means of a handheld or a laptop computer. The energy provided by alkaline batteries ensures 2 months of continuous recording in the field. Example of radon anomalies are exhibited.  相似文献   
25.
The uppermost unit of the Cretan nappe system consists of ophiolites on the top, and an ophiolitic mélange at the base.Among the various constituents of the mélange, there are slices of low-P/high-T metamorphics. They form a variegated series consisting of tholeiitic ortho-amphibolites, para-amphibolites, andalusite and sillimanite-cordierite-garnet bearing mica schists, calcsilicate rocks, and marbles. The metamorphic sequence is locally intruded by early tectonic magmatites of gabbroic, dioritic and granitic composition. Critical mineral assemblages lead to a maximum temperature of about 700° C reached during metamorphism, at a total pressure of 4–5 kilobars. K — Ar dating on 6 hornblendes, 7 biotites and 1 muscovite yielded cooling ages of 75–66 m.y. and confirmed earlier results according to which the metamorphism and related magmatism took place in Late Cretaceous times.In order to evaluate the age relationships between the hightemperature metamorphics within the ophiolitic mélange and the ophiolites, hornblendes from ultramafic and mafic rocks of the ophiolite complex were dated by the K — Ar method. Hornblende from one schistose hornblendite forming a constituent of the ophiolites proper yielded 156 m.y. and thus provides a middle Jurassic minimum age for the formation of this piece of oceanic lithosphere. Four hornblendes of calc-alkaline gabbrodiorite dikes within the ophiolite complex gave distinctly lower K — Ar dates of about 140 m.y.. The dikes probably intruded after the detachment of the ophiolites in an island-arc or continental-margin environment.As a consequence, the high-temperature metamorphics and related intrusives in the ophiolitic mélange of Crete are genetically unrelated to the overlying ophiolites. The paleogeographic position of the crystalline terrane, slices of which are now incorporated into the ophiolitic mélange is still open to discussion.  相似文献   
26.
Polymetamorphic rocks of Sifnos (Greece) have been investigated by Rb-Sr, K-Ar, and fission track methods. Critical mineral assemblages from the northern and southernmost parts of Sifnos include jadeite+quartz+3T phengite, and omphacite+garnet +3T phengite, whereas the central part is characterized by the assemblage albite+chlorite+epidote+2M 1 phengite.K-Ar and Rb-Sr dates on phengites (predominantly 3T) of the best preserved high P/itTmetamorphic rocks from northern Sifnos gave concordant ages around 42 m.y., indicating a Late Lutetian age for the high P/T metamorphism. Phengites (2M 1+3T) of less preserved high P/T assemblages yielded K-Ar dates between 48 and 41 m.y. but generally lower Rb-Sr dates. The higher K-Ar dates are interpreted as being elevated by excess argon.K-Ar and Rb-Sr ages on 2M 1 phengites from central Sifnos vary between 24 and 21 m.y. These ages date a second, greenschist-facies metamorphism which overprinted the earlier high-pressure metamorphic rocks.  相似文献   
27.
Problems related to the formation of chloritoid in metapelites, associated with lawsonite-glaucophane bearing metabasalts, in the quartzitephyllite series of western Crete (Greece) are discussed. It is supposed that chloritoid was formed, during prograde metamorphism, according to a gliding-equilibrium reaction of the type (Fe,Mg)-carpholite1+chlorite1 (Fe,Mg)-carpholite1 2+(Fe,Mg)-chloritoid1 2 +chlorite1→2+quartz+H2O ? (Fe,Mg)-chloritoid2+chlorite2+quartz+H2O. This view is stipulated by the occurrence of ferrocarpholite-chloritoid schists in the southeastern part of central Crete. The assemblage chloritoid+ lawsonite recently recognized in western Crete provides evidence that the formation of chloritoid started well within the stability field of lawsonite.  相似文献   
28.
The paleoceanography in the Nordic seas was characterized by apparently repeated switching on and off of Atlantic water advection. In contrast, a continous influx of Atlantic waters probably occurred along the northern Barents Sea margin during the last 150?ka. Temporary ice-free conditions enhanced by subsurface Atlantic water advection and coastal polynyas accelerated the final ice sheet build-up during glacial times. The virtually complete dissolution of biogenic calcite during interglacial intervals was controlled mainly by CO2-rich bottom waters and oxidation of higher levels of marine organic carbon and indicates intensive Atlantic water inflow and a stable ice margin.  相似文献   
29.
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6–2.4 Ma). (2) A transitional growth phase (2.4–1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic–Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.  相似文献   
30.
Crustal extension in the overriding plate at the Aegean subduction zone, related to the rollback of the subducting African slab in the Miocene, resulted in a detachment fault separating high‐pressure/low‐temperature (HP‐LT) metamorphic lower from non‐metamorphic upper tectonic units on Crete. In western Crete, detachment faulting at deeper crustal levels was accompanied by structural disintegration of the hangingwall leading to the formation of half‐graben‐type sedimentary basins filled by alluvial fan and fan‐delta deposits. The coarse‐grained clastic sediments in these half‐grabens are exclusively derived from the non‐metamorphic units atop the detachment fault. Being in direct tectonic contact with HP‐LT metamorphic rocks of the lower tectonic units today, the basins must have formed in the period between c. 20 and 15 Ma, prior to the exposure of the HP‐LT metamorphic rocks at the surface, and juxtaposed with the latter during ongoing deformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号